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Modeling Mid-Infrared Fiber Laser
Systems
Robert I. Woodward and Martin Gorjan

ABSTRACT
Mid-IR fibre lasers are complex nonlinear dynamical systems, involving interplay be-
tween many physical phenomena and offering vast design freedom. The development
of numerical models to simulate laser behaviour is therefore an invaluable tool, both to
optimize output performance and to advance understanding of novel laser transitions.
Such insight would be significantly slower and more costly to obtain (or indeed, im-
possible) through laboratory experimentation alone. In this Chapter, we offer a general
introduction to various topics in mid-IR fibre laser modelling, with a particular emphasis
on rate equation simulations. Complete formalisms are developed from first principles,
notably using a matrix approach which is well suited for complex mid-IR transitions, and
we discuss practical solution strategies. Case studies are presented for CW, Q-switched
and gain-switched lasers, considering both the dysprosium and erbium ion. The second
part of the Chapter then considers thermal modelling to identify cooling strategies for
high-power systems and ultrashort pulse simulations for modelling mode-locked lasers.
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13.1 INTRODUCTION

The aim of theoretical laser modelling in scope of the present chapter is to
predict the behaviour of a fibre laser from the properties of its constituent parts
and other design parameters, in order to achieve faster and/or deeper insight than
is generally possible by experimentation alone. As such it is not a substitute
but a valuable supplement to experimental procedures. The relation goes both
ways: knowledge of many spectroscopic parameters is required as an input to
the model and must be obtained beforehand. The output of the model can, on the
other hand, be used to study the individual or combined effects of any of those
parameters, in order to provide further validation for the parameters’ values, as
well as offering invaluable guidance in laser system design and optimization.
The output of such model would typically include fairly common laser operation
parameters such as the laser output power and efficiency, threshold power of the
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laser oscillator, signal gain of the laser amplifier, as well as amplified spontaneous
emission (ASE) as the source or background to the main signal. However, many
more output parameters can be accessed as part of the solution.

Laser rate equation models are commonly applied to simulate the evolution
of the power and energy dynamics of fibre (and other types of) laser systems.
Typically, mid-IR laser transitions in rare-earth-doped media are more spectro-
scopically complicated than in the near-IR, due to the need to consider many
energy levels. Numerous transitions can be relevant between these levels, in-
cluding cross-relaxation and energy transfer processes between multiple ions
(e.g. due to heavy doping or co-doping designs). For this reason, defining the
rate equation model in terms of a scalable matrix formulation is particularly well
suited for simulating mid-IR systems. The construction of such a model, along
with discussion on how to prepare the input data and the methods to find its
solutions in steady-state and transient (i.e. time-dependent) regimes, constitute
the central part of the present Chapter.

These models have already proven useful in a number of mid-IR fibre laser
systems. For example, in heavily-doped Er:ZBLAN, numerical modelling en-
abled recalibration of the interionic parameters that seem to appear significantly
weaker than previously measured in the bulk material [1, 2]. Such procedures
also permitted the estimation of cross section values for previously unmea-
sured excited state absorption (ESA) transitions in Er:ZBLAN [3]. In situations
where spectroscopic parameters were already well-known, simulations have been
shown to be a powerful tool for optimising laser cavity designs for record tun-
ability and output power [4], in addition to exploring pulsed operating regimes
by considering dynamical solutions [5, 6]. After introducing the rate equation
method in Section 13.2, we provide case studies in both steady-state and dynam-
ical regimes by applying the model to both a multi-level Er system and a much
simpler two-level Dy transition, which is presented first as a more accessible
introduction to practical simulations.

While rate equation modelling is perhaps the most important technique for
simulating fibre lasers, there are a number of other theoretical tools which can be
used to gain further insight into laser operation. For example, thermomechanical
failure of ZBLAN fibres at high power is a current limitation to power scaling
of mid-IR lasers. Therefore, calculation of heat flow in fibres through thermal
modelling can enable improved designs and cooling strategies, as discussed
in Section 13.3. Additionally, the scope of applications for mid-IR lasers is
further broadened by mode-locking them to produce ultrashort pulses of light.
In this case, it becomes important to consider the phase, in addition to the
amplitude of light, in order to simulate mode-locked systems, which is the topic
of Section 13.4. Finally, the Chapter is concluded in Section 13.5 with an outlook
of the opportunities that lie ahead.
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13.2 RATE EQUATION MODELLING

The laser rate equations are differential equations that describe the evolution of
power / energy in laser modes and atomic (ionic, molecular etc.) systems in both
time and space, i.e. along the fibre length. A more thorough treatment of the
subject in general can be found in the literature, e.g. Ref. [7], and it is noted
that numerous works have already considered detailed rate equation modelling
of near-IR transitions, e.g. Refs [8, 9, 10]. In this section, the basic concepts
will be gradually introduced on two mid-IR systems: first, a simple 2-level Dy
system and then a more complex multi-level Er system.

It is worth mentioning here that in the rate equation model, only optical
power (density) is taken into account, via essentially counting the number of
photons of certain energy, i.e. wavelength, in the fibre core / modes (volume).
Therefore, optical properties stemming from the wave nature of light, including
phase, are not included. Fibre guided modes must be calculated separately and
are then accounted for with a mode overlap factor, as explained in the later
sections. Additionally, it should be noted that rate equations technically describe
a statistical evolution averaged over many ions within the doped fibre: this
assumes all ions behave identically and thus neglects local variations in the fibre
and ionic clustering effects. Extended models have been proposed to relax some
of these assumptions [11], but have yet to be applied for mid-IR fibre systems
and are beyond the scope of this chapter.

13.2.1 Definition of Optical Channels

Before formulating a system of rate equations, the concept of optical channels
is introduced, which defines how light at different wavelengths is handled. As
with any numerical model, continuous quantities such as wavelength must be
discretised, i.e. sampled. For example, one could define a numerical grid of
many equally spaced wavelength values that cover the spectral region of interest.
The simulation would then proceed by solving the rate equations simultane-
ously for all these different wavelengths, since they are coupled by the broad
absorption/emission cross sections for transitions between levels. However, this
approach quickly becomes computationally expensive when dealing with hun-
dreds of simultaneous equations and many possible interactions.

A more practical solution, therefore, is to carefully choose a small number
of optical channels—i.e. narrow wavelength regions at various salient wave-
lengths. At the simplest level, this could be a monochromatic pump channel
at the pump wavelength and a monochromatic signal channel at the wavelength
where the laser is expected to lase. Fig. 13.1 illustrates this concept with the
simple example of the in-band-pumped Dy laser (6𝐻13/2 →6 𝐻15/2 transition):
we consider the case for pumping with a 2.83 µm laser and assume 3.15 µm
narrowband cavity mirrors (e.g. FBGs) that define the signal wavelength. If a
laser with broadband mirrors is being simulated, where the lasing wavelength is
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FIGURE 13.1 (a) Illustration of simple 2-level model for 3 µm Dy lasers. Arrows indicate the
use of two optical channels to model the transfer of population between the levels (upward arrows
indicate absorption; downward arrows indicate emission). The total fibre doping concentration is
𝑁doping = 𝑁0 + 𝑁1. (b) Absorption and emission cross sections for Dy:ZBLAN.

not known, then repeated simulations could be performed with varying signal
channel wavelengths to find the case with the lowest lasing threshold, which
indicates the free-running wavelength.

Models can be made more accurate by including amplified spontaneous
emission (ASE), which is implemented by adding a number of channels spanning
the emission region with, for example, 10s nm width. Using more channels with
narrower channel widths can increase accuracy, but at greater computational
cost. Clearly there is a trade-off here and for many reported CW mid-IR fibre
laser simulations, it is worth highlighting that good agreement is often found with
experimental results by using only pump and signal channels, i.e. neglecting
ASE.

Finally, it is important to note that optical channels are defined for a single
propagation direction only, in order to include the effect of mirror reflectivities.
Therefore, for each wavelength, two channels must be included in the model
(which are coupled by cavity reflectivity boundary conditions, as described in
Section 13.2.4). The power along the length of fibre at channel wavelength 𝜆

can thus be written as 𝑃+ (𝜆, 𝑧) and 𝑃− (𝜆, 𝑧) at any given time 𝑡, where 𝑧 is the
longitudinal coordinate and + and − denote travelling direction along the fibre,
e.g. from left to right and vice versa, respectively.

13.2.2 Basic 2-Level System Formulation

In the simplest laser rate equation system, only two energy levels—a ground
state and an excited state—are involved in the model. Two optical transitions
may appear between those two levels: an upward transition that is creating the
excitation, and a downward transition that is emitting / amplifying light using that
excitation. Additionally, any relaxation processes than result in a spontaneous
decay of the excited state can be combined in the effective lifetime of the excited
state 𝜏.



Modeling Mid-Infrared Fiber Laser Systems Chapter | 13 5Modeling Mid-Infrared Fiber Laser Systems Chapter | 13 5Modeling Mid-Infrared Fiber Laser Systems Chapter | 13 5

For practical simulations, four optical channels can be considered: 𝑃+ (𝜆p, 𝑧)
and 𝑃− (𝜆p, 𝑧) for the pump radiation, and 𝑃+ (𝜆s, 𝑧) and 𝑃− (𝜆s, 𝑧) for the laser
signal. The evolution of the power in the laser channel can then be written as

d𝑃± (𝜆s, 𝑧)
d𝑧

= ±𝑃± (𝜆s, 𝑧) [𝑔(𝜆s, 𝑧) − 𝑙s] + 𝑃spon (𝜆) (13.1)

with the effective gain 𝑔(𝜆s, 𝑧), the background losses other than absorption 𝑙s
and 𝑃spon (𝜆s) accounting for the spontaneous emission into the laser channel.
Similarly the evolution in the pump channels can be written as

d𝑃± (𝜆p, 𝑧)
d𝑧

= ±𝑃± (𝜆p, 𝑧)
[
𝑔(𝜆p, 𝑧) − 𝑙p

]
+ 𝑃spon (𝜆) (13.2)

with the effective absorption 𝛼(𝜆p, 𝑧) and background losses 𝑙p. Note that in
both cases the absorption and emission for pump and signal are accounted for in
their respective effective gain and absorption terms. These are as follows

𝑔(𝜆s, 𝑧) = Γ(𝜆s) [𝜎10 (𝜆s)𝑁1 (𝑧) − 𝜎01 (𝜆s)𝑁0 (𝑧)] (13.3)

for signal gain and absorption, and

𝑔(𝜆p, 𝑧) = Γ(𝜆p)
[
𝜎10 (𝜆p)𝑁1 (𝑧) − 𝜎01 (𝜆p)𝑁0 (𝑧)

]
(13.4)

for pump absorption, where Γ(𝜆) are the mode overlap integrals with the doped
fibre core, 𝜎10 (𝜆) are the emission and 𝜎01 (𝜆) are the absorption cross-sections
at laser signal and pump wavelengths, as designated by the subscripts s and
p, respectively. The atomic populations (or ionic populations, which is the
technically more correct term) in the ground and excited states that interact with
the optical transitions are described by their respective number densities 𝑁0 (𝑧)
and 𝑁1 (𝑧). These enumerate how many of the ions per volume are found in the
ground and the excited state at position 𝑧 along the doped fibre core.

While the dominant power change from the gain medium will be reduction
of pump power through absorption and enhancement of signal power through
emission, it should be noted that Eqn. 13.3 and Eqn. 13.4 also account for
emission of light into the pump channels and absorption of light from the signal
channels. This is an important phenomena to include, particularly in the case of
in-band pumped lasers were signal reabsorption can be strong.

The spontaneous emission can be expressed as

𝑃spon (𝜆) = 𝑛modesΓ(𝜆)𝜎10 (𝜆)𝑁1 (𝑧)𝐸photΔ 𝑓 (13.5)

for each channel with photon energy 𝐸phot = ℎ𝑐/𝜆 and channel spectral width
Δ 𝑓 . The parameter 𝑛modes is the number of guided transverse modes—𝑛modes = 2
for the typical case of a fibre supporting only the fundamental mode, which com-
prises two orthogonal polarisations [8]. This term is important when including
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ASE channels but can be neglected when using only monochromatic pump and
signal channels. Alternatively, as a simplified way to include spontaneous emis-
sion without introducing additional ASE channels, one could set the channel
width for the signal channel here equal to the laser gain bandwidth (e.g. as used
for modelling spontaneous emission-initiated pulsation in Ref. [6]).

The dynamics of the local excited state atomic population 𝑁1 (𝑧, 𝑡) at position
𝑧 and time 𝑡 can then be described by a rate equation, including terms which
represent all the processes that either excite the ions (adding to the population,
denoted by the + sign) or relax them (removing from the population, denoted by
the − sign):

d𝑁1 (𝑧, 𝑡)
d𝑡

= 𝑁0 (𝑧, 𝑡)
(
Γ(𝜆s)𝜎01 (𝜆s)𝑃(𝜆s, 𝑧, 𝑡)

𝐴core × ℎ𝑐/𝜆s
+
Γ(𝜆p)𝜎01 (𝜆p)𝑃(𝜆p, 𝑧, 𝑡)

𝐴core × ℎ𝑐/𝜆p

)
−

𝑁1 (𝑧, 𝑡)
(
Γ(𝜆s)𝜎10 (𝜆s)𝑃(𝜆s, 𝑧, 𝑡)

𝐴core × ℎ𝑐/𝜆s
+
Γ(𝜆p)𝜎10 (𝜆p)𝑃(𝜆p, 𝑧, 𝑡)

𝐴core × ℎ𝑐/𝜆p
+ 1
𝜏

)
(13.6)

where 𝑃(𝜆s, 𝑧, 𝑡) = [𝑃+ (𝜆s, 𝑧, 𝑡) + 𝑃− (𝜆s, 𝑧, 𝑡)] is the total laser signal power and
𝑃(𝜆p, 𝑧, 𝑡) =

[
𝑃+ (𝜆p, 𝑧, 𝑡) + 𝑃− (𝜆p, 𝑧, 𝑡)

]
is the total pump power at position 𝑧

and time 𝑡, 𝐴core is the fibre core area, ℎ is the Planck constant, 𝑐 is the speed of
light in vacuum and 𝜏 is the effective lifetime of the excited state. Sometimes a
relaxation rate 𝑅 is used which is the inverse of the lifetime, i.e. 𝑅 = 1/𝜏, and
that total rate is a sum of all the partial rates of transitions that are proportional to
the population density 𝑁1, such as e.g. fluorescence (radiative) and multiphonon
(non-radiative) processes, but excluding the stimulated emission.

The total number of ions 𝑁doping = 𝑁0 + 𝑁1 is always conserved. Since there
are only two levels involved in this case, the ground level population differential
equation is simply

d𝑁0 (𝑧, 𝑡)
d𝑡

= −d𝑁1 (𝑧, 𝑡)
d𝑡

. (13.7)

Due to the local electric field in the glass host material, a rare earth ion’s
energy manifold can be split into several Stark levels. For many practical cases,
however, those Stark levels can be counted together as one level in the rate
equation model because of the rapid thermalisation among them. This is taken
into account with the effective cross sections for absorption and emission that
each results from the contributions and temperature-dependent distributions of
individual Stark levels. Further discussion on how to obtain the required cross
sections and overlap integrals is presented in Sec. 13.2.5.

Equations 13.1–13.6 form the rate equations system and describe the full
evolution of the power and level populations in both space and time for a simple
two-level system.
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13.2.3 Matrix Formulation

The laser rate equations that were introduced in the previous section involved
only two atomic energy levels and a small number of optical transitions between
them. Many active ions in the mid-IR, however, involve substantially more
complex energy level structures and a larger number of transitions among them.
In this section, we show how to formulate such a complex rate equation system of
equations in matrix notation, which is not only elegant in form but also enables
application of efficient algorithms for solving this numerically.

The power evolution 𝑃(𝜆, 𝑧) for each spectral channel of wavelength 𝜆 along
the fibre can be written as:

d𝑃± (𝜆, 𝑧)
d𝑧

= ±
(
𝑃± (𝜆, 𝑧)

(
Γ(𝜆)

[∑︁
𝑖, 𝑗

𝜎𝑖 𝑗 (𝜆)𝑁𝑖 (𝑧) − 𝜎𝑗𝑖 (𝜆)𝑁 𝑗 (𝑧)
]
− 𝑙 (𝜆)

)
+ 𝑃spon (𝜆)

)
(13.8)

where Γ(𝜆) is the core overlap factor and 𝑙 (𝜆) is the background loss of each
individual spectral channel. Each atomic energy level is assigned a numerical
label, where the ground level is 0 (with population 𝑁0), the first excited state
is 1 (with population 𝑁1), the second excited state is 2 (with population 𝑁2)
etc. The total number of levels included in the model is 𝑚. The 𝜎𝑖 𝑗 term
is the cross section of the transition between 𝑖 → 𝑗 levels. When 𝑖 < 𝑗 this
denotes absorption and when 𝑖 > 𝑗 it denotes emission. The summation term is
taken over all combinations of levels pairs (𝑖, 𝑗 ≠ 𝑖), to account for all possible
transitions between energy levels, which includes up to 𝑚 × (𝑚 − 1) possible
terms.

The spontaneous emission 𝑃spon (𝜆, 𝑧) term can then be written as:

𝑃spon (𝜆, 𝑧) = 𝑛modesΓ(𝜆)
©­­­«
∑︁
𝑖, 𝑗
𝑖> 𝑗

𝜎𝑖 𝑗 (𝜆)𝑁𝑖 (𝑧)
ª®®®¬
ℎ𝑐Δ 𝑓

𝜆
. (13.9)

Only downward transitions contribute, associated with their respective radiative
relaxations between levels 𝑖 → 𝑗 where 𝑖 > 𝑗 .

The atomic level populations for all 𝑚 levels are written in a vector N =

[𝑁0, 𝑁1... 𝑁𝑚−1], and their respective rate equations can then be expressed at
time 𝑡 and position 𝑧 in matrix notation as:

dN
d𝑡

= LN + W. (13.10)

where L and W are matrices which describe the linear and nonlinear popula-
tion change rate terms, respectively. The linear matrix includes spontaneous
emission, stimulated absorption/emission and multiphonon relaxation terms,
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represented in the form:

L =


− ∑𝑚−1

𝑖=0 𝑅0𝑖 · · · 𝑅(𝑚−1)0

...
. . .

...

𝑅0(𝑚−1) · · · −∑𝑚−1
𝑖=0 𝑅(𝑚−1)𝑖


. (13.11)

Note that subscript 𝑚 − 1 refers to the highest energy level in the model, since
the first level is assigned the index 0. The non-diagonal elements on the right
hand side represent the incoming (positive) rates of changes to the population
𝑁𝑖 from all the individual levels 𝑗 ≠ 𝑖. The diagonal elements contain the sum
of all the outgoing (thus negative) rates. These individual rates are:

𝑅𝑖 𝑗 = 𝛽𝑖 𝑗/𝜏𝑖 + 𝑅nr
𝑖 𝑗 +

∑︁
𝜆

𝜎𝑖 𝑗 (𝜆)
𝑃(𝜆)Γ(𝜆)

𝐴core × ℎ𝑐/𝜆 (13.12)

where 𝜏𝑖 is the radiative lifetime 𝛽𝑖 𝑗 is the associated branching ratio, 𝑅nr
𝑖 𝑗

is
the non-radiative relaxation rate, and the third term represents the stimulated
absorption/emission for the 𝑖 → 𝑗 transition, summed over all spectral channels
(in both propagation directions, 𝑃(𝜆) = 𝑃+ (𝜆) + 𝑃− (𝜆)).

The nonlinear matrix describes changes in level populations due to the energy
transfer processes (energy transfer upconversion (ETU), cross relaxation etc.),
which can be written as:

W =



∑
𝑖, 𝑗 ,𝑘,𝑙

𝑘=0 or 𝑙=0
𝑤𝑖 𝑗𝑘𝑙𝑁𝑖𝑁 𝑗 −

∑
𝑖, 𝑗 ,𝑘,𝑙

𝑖=0 or 𝑗=0
𝑤𝑖 𝑗𝑘𝑙𝑁𝑖𝑁 𝑗

...∑
𝑖, 𝑗 ,𝑘,𝑙

𝑘=(𝑚−1) or 𝑙=(𝑚−1)
𝑤𝑖 𝑗𝑘𝑙𝑁𝑖𝑁 𝑗 −

∑
𝑖, 𝑗 ,𝑘,𝑙

𝑖=(𝑚−1) or 𝑗=(𝑚−1)
𝑤𝑖 𝑗𝑘𝑙𝑁𝑖𝑁 𝑗


(13.13)

where the the energy transfer coefficient 𝑤𝑖 𝑗𝑘𝑙 denotes the changing population
states of the first ion 𝑖 → 𝑘 and the second ion 𝑗 → 𝑙 for a particular interionic
process. The terms of this matrix include products of two population values,
making the rate equation nonlinear.

13.2.4 Boundary Conditions

Having formulated a system of equations for the photonic and atomic popula-
tions along a doped fibre, the only remaining physical phenomena to add into
the model is the behaviour of light at the ends of the fibre. This could include re-
flections from mirrors, which couple power from forwards-travelling wavelength
channels into backwards-travelling channels (and vice versa) according to some
wavelength-dependent reflectivity value. The unreflected quantity of light can
then be taken as the output from the laser. Additionally, optical inputs to the
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Rear Mirror 
Reflectivity, Rrear

P+(λp, z)

z=L

z

P(z)=[P+(λp,z), P−(λp,z), P+(λs,z), P−(λs,z)]z=0

Front Mirror
Reflectivity, Rfront

P+(λs, z)

P−(λp, z)

P−(λs, z)

Pin,front Pin,rear

FIGURE 13.2 Illustration of optical channels (for both forwards (+) and backwards (−) directions)
and cavity parameters for a simulation including 2 wavelengths.

fibre such as pump power (and possibly signal power for amplifier modelling)
are accounted for at these facets (illustrated in Fig. 13.2).

These inputs and reflectivities are the boundary conditions of the power flow
equation (Eqn. 13.8). At the distal fibre end (𝑧 = 𝐿), these can be expressed as:

𝑃− (𝑧 = 𝐿, 𝜆) = 𝑅rear (𝜆)𝑃+ (𝑧 = 𝐿, 𝜆) + (1 − 𝑅rear (𝜆))𝑃in,rear (𝜆) (13.14)

where 𝑅rear (𝜆) is the reflectivity at wavelength 𝜆 for the rear-end mirror and
Pin,rear (𝜆) is the power at wavelength 𝜆 injected backwards into the fibre at the
rear end. Similarly, at the front fibre facet (𝑧 = 0):

𝑃+ (𝑧 = 0, 𝜆) = 𝑅front (𝜆)𝑃− (𝑧 = 0, 𝜆) + (1 − 𝑅front (𝜆))𝑃in,front (𝜆) (13.15)

where the ‘front’ subscripts imply the same quantities as above, but at the front
fibre tip.

Using the matrix formalism, it is natural to handle the power of each optical
channel as a vector. For example, for the case of one pump and one signal wave-
length, one could define P(𝑧) = [𝑃+ (𝜆p, 𝑧), 𝑃− (𝜆p, 𝑧), 𝑃+ (𝜆s, 𝑧), 𝑃− (𝜆s, 𝑧)].
Other channel properties such as reflectivities, overlap factors and background
loss can also be stored as vectors and multidimensional matrices can hold the
cross section values for all optical channels for all possible transitions. With
such data structures, many of the equations in this section can be computed us-
ing efficient parallel matrix operations, rather than iterating over all wavelengths
and transitions sequentially. Note that P and N are also functions of time, even
though this 𝑡 variable was not explicitly included above for brevity of notation—
therefore pulse pumping / cavity modulation can be modelled by making the
boundary conditions time-varying too.

13.2.5 Preparation of Numerical Spectroscopic Data

To obtain meaningful performance predictions from simulations, it is critical
to provide accurate spectroscopic inputs to the model. We therefore briefly
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consider how to acquire efficient numerical representations of the relevant data.

13.2.5.1 Cross Sections
Absorption and emission cross sections are required for all relevant transitions
(i.e. transitions with non-zero cross section at the wavelengths of interest).
These are typically obtained from direct measurements of the absorption or
fluorescence spectra of rare-earth-doped materials (e.g. processed using the
Füchtbauer–Ladenburg equation and taking the doping concentration into ac-
count) [7]. Alternatively, if only one of the two cross sections is available, the
other can be computed using the McCumber relations.

While a simulation could take individual value inputs for the cross section
at each optical channel wavelength, it is far more flexible to incorporate the
full spectral profile for each cross section into the model. For example, the
original measurement data file could be loaded each time and interpolated for
the user-specified wavelength channels. However, a more efficient and widely
used numerical representation is to fit a summation of 𝑛 Gaussians to the raw
data (e.g. using a least-squares fitting routine):

𝜎(𝜆) =
𝑛∑︁
𝑖=0

𝐴𝑖 exp
(
− (𝜆 − 𝜆𝑖)2

2𝑤2

)
(13.16)

where 𝐴𝑖 , 𝜆𝑖 and 𝑤𝑖 are the amplitude, central position, and width, respectively,
for the 𝑖th fitted Gaussian. The number of Gaussian required, 𝑛 depends on the
complexity of the spectral shape, which may be determined empirically. As a
result, only a small number of fitting coefficients need to be stored to accurately
describe the full cross section profile. Figure 13.3 demonstrates the application of
this technique to the Dy:ZBLAN 6H15/2—6H13/2 transitions, showing excellent
fits using only 3 Gaussians.

It should be noted that we technically work with effective cross sections for
modelling. By rigorous definition, a transition cross section is defined between
exact electronic levels, which for rare-earth-doped fibres means considering
each individual Stark-split sublevel within each manifold. Stark-split levels are
closely spaced, however and are thermally coupled (with relative occupancy
described by the Boltzmann distribution, assuming rapid thermalisation within
manifolds). Therefore, when absorption / fluorescence spectra are measured at
room temperature then processed to compute the effective cross sections, these
spectra intrinsically include the effects of thermal occupancy of the Stark levels
and the numerous possible transitions between all sublevels [10]. Hence, for
practical modelling, cross sections are simply defined for manifold to manifold
transitions.

13.2.5.2 Radiative Lifetimes and Branching Ratios
Beyond quantifying the spectral shape of transitions, it is important to deter-
mine the general radiative behaviour for each manifold, in order to compute
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FIGURE 13.3 (a) Absorption and (b) emission cross sections for Dy:ZBLAN 6H15/2—6H13/2
transition, showing sum of Gaussians fitting and tabulated fitting parameters.

the radiative lifetime and branching ratios. This would be an impractical task
experimentally for ions where many level are considered. Fortunately, however,
Judd-Ofelt theory offers a simple solution for estimating oscillator strengths of all
4f–4f transitions for a lanthanide ion in a given host, using only 3 experimentally
fitted parameters, Ω2, Ω4 and Ω6. For Judd-Ofelt calculations, tables of reduced
matrix elements of quantum mechanical tensor operators for each gain medium
are also required as inputs, but for a given rare-earth ion, these values are essen-
tially host-invariant and it has become standard to use readily available tabulated
values of matrix elements for rare-earths in LaF3 [12] (for a detailed explanation
how these are originally computed from fundamental quantum mechanics, see
Ref. [13]).

A more comprehensive treatment of Judd-Ofelt theory is presented in earlier
chapters of the book. For practical modelling, one can also often find com-
puted radiative lifetimes and branching ratios in the literature for the doped gain
medium of interest.

13.2.5.3 Nonradiative Lifetimes
Unlike spontaneous radiative decay (where the population of each manifold
feeds into all lower-energy manifolds in a ratio given by the branching ratio),
for the spontaneous nonradiative (i.e. multiphonon-induced) decay, the popu-
lation decays only into the next-lowest energy level. In practice, measurements
of manifold lifetimes (e.g. using fluorescence temporal decay measurements)
cannot resolve the relative contributions from radiative and nonradiative phe-
nomena; the total measured lifetime is the inverse sum of the inverse radiative
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(𝜏r) and nonradiative (𝜏nr) lifetimes: 1/𝜏 = 1/𝜏r + 1/𝜏nr. For mid-IR transitions
(typically between closely spaced levels), nonradiative lifetimes are often much
shorter than radiative lifetimes. In this case, one could approximate the nonra-
diative lifetime as being equal to the total measured lifetime in the model for
simplicity.

Alternatively, it is also possible to estimate the nonradiative lifetime by
calculating the nonradiative decay rate 𝑅nr, where 𝑅nr = 1/𝜏nr, through an
empirically derived ‘energy-gap law’ [14]. For a transition between levels of
energy spacing Δ𝐸 , in a host with maximum phonon energy 𝐸phonon, the number
of phonons for a multiphonon decay is: 𝑝 = Δ𝐸/𝐸phonon. The nonradiative
relaxation rate at temperature 𝑇 is then given by:

𝑅nr = 𝐵[𝑛(𝑇) + 1] 𝑝 exp(−𝛼Δ𝐸) (13.17)

where 𝐵 and 𝛼 are host-dependent parameters and 𝑛(𝑇) is the Bose-Einstein
occupation number. For ZBLAN, one can use 𝐵 = 1.59 × 1010 s−1, 𝛼 =

5.19×10−3 cm and 𝐸phonon = 500 cm−1, taken from tabulated values in Ref. [14].

13.2.5.4 Energy Transfer Coefficients
Finally, for highly doped fibres, we must consider the possibility of energy
transfer between dopant ions (e.g. cross relaxation, ETU, etc., which occur due to
dipole-dipole resonant interactions). Such energy transfer can be between ions of
the same type, or between different species of ion if the fibre is co-doped. These
phenomena can be usefully exploited, e.g. to depopulate the lower-laser-level for
3 µm lasing in Ho/Pr:ZBLAN, or may act against the desired laser transition.
Unfortunately, this is often the most challenging parameter to determine for a
model and depends critically on the doping concentration.

The cross sections and radiative properties we previously discussed for sim-
ulating gain media are effectively independent of doping concentration. This
simplifies the acquisition of modelling parameters, since a wide number of stud-
ies have already been published that offer such data and when optimizing laser
designs, the dopant concentration can be freely varied by the user. Energy trans-
fer coefficients, however, directly depend on doping concentration, since the
strength of dipole-dipole interactions is related to the distance between ions—
increased doping thus leads to greater transfer coefficients. It is also possible
for phonons to be involved in these dynamics, known as phonon-assisted energy
transfer.

These parameters can be inferred from experimental measurements, typically
using bulk glass samples in complex pump-probe experiments, that require
knowledge of all other parameters that are involved in transitions from the same
level(s). This may lead to large uncertainties and the resulting values are only
strictly valid for gain media of the same doping concentration. A small number
of studies using batches of samples with varying concentrations have proposed
various empirical relations to describe how coefficients vary with concentration,
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which could be incorporated into the rate equation to allow the user to vary
the doping concentration while still including energy transfer effects. Energy
transfer parameters turn out to be critical to the operation of mid-IR Er fibre
lasers, and they are the subject of more in-depth discussion in our case studies
in Sec. 13.2.10.

13.2.5.5 Fibre Mode Properties
The final input parameters to be discussed are the attenuation per length 𝑙 (𝜆) and
modal overlap Γ(𝜆), which are properties of the gain fibre geometry / fabrication
quality, rather than the ion spectroscopy. Fibre attenuation (i.e. background loss)
arises from absorption and scattering effects, both from the intrinsic host glass
and additional impurities added during the fabrication process. While doped
silica fibres can be produced with less than 0.2 dB/km loss, state-of-the-art
ZBLAN fibre manufacturing typically results in doped fibres with 0.1–0.5 dB/m
attenuation. For optimum accuracy in modelling, the loss spectrum should
be measured (this can be heavily wavelength dependent, e.g. due to water
absorption peaks), then the loss value at each spectral channel used in the model
can be found by interpolation. However, it can be practically difficult to isolate
background loss from measurements of white-light transmission through fibre if
the dopant absorbs strongly in the region of interest. Thus, in practice, a constant
background loss value (independent of channel wavelength) is often used.

The second parameter, modal overlap Γ(𝜆), refers to the overlap integral of
guided optical modes with the doped fibre core. For a fully rigorous analysis,
one should include the radial dependence of power in the rate equations since
the mode intensity varies across the fibre diameter. However, a widely used
approximation which has minimal reduction in accuracy for step-index-geometry
fibres is to assume the mode intensity is constant (i.e. a flat-top beam) and apply
an overlap factor to account for the reduction in optical interaction with the dopant
due to the mode field extending beyond the doped core region [8]. For single-
mode step-index fibres with known core diameter and numerical aperture (NA),
Γ(𝜆) can be computed by performing an eigenmode analysis for a cylindrical
step-index waveguide geometry (discussed in Section 13.4.1). The outcome of
this analysis is the mode-field diameter 𝑤(𝜆) for each wavelength in the fibre,
which can be combined with the fixed-size core diameter 𝑑 to compute the
overlap integral factor [15]:

Γ(𝜆) = 1 − exp
(
−2𝑑2

𝑤(𝜆)2

)
. (13.18)

Note that each wavelength has a different overlap factor, thus this can be a
vector-type input to the model if using the matrix formalism. For single-clad
fibres, one often finds Γ ∼ 0.6–1.0. For example, for a 12.5 µm core diameter
fibre with 0.16 NA (that gives single-mode cut-off at 2.6 µm), the Marcuse
equation predicts a mode-field diameter of 15.2µm at 3µm wavelength, yielding
Γ = 0.74.
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Thus far we have considered single-mode single-clad fibres where both pump
and signal modes are core-guided. However, our model can be simply adapted
to double-clad fibres by re-defining Γ(𝜆) where 𝜆 = 𝜆p. As light guided by
the cladding is multimoded and covers a wide area, to account for this effect
(assuming uniform pump intensity across the whole area), one can set Γ as the
ratio of the geometric core area to the inner cladding area for pump wavelengths
that are coupled into the inner cladding:

Γ(𝜆) = 𝜋(𝑑/2)2

𝜋(𝑑clad/2)2 (13.19)

where 𝑑clad is the effective inner cladding diameter (this assumes the generated
signal is confined to the core, which is reasonable since typically only the core
region is doped). Note that double-clad fibres typically employ a non-circular
cladding, thus the effective cladding diameter may be smaller than actual cladding
diameter [3], requiring empirical adjustment of 𝑑clad within a reasonable window
of uncertainty to optimize agreement between simulations and the experiment.
Indeed, it should be noted that many of the input parameters for simulations will
have an associated uncertainty range. Therefore, a valuable step in developing a
robust numerical model is to compare simulations to trusted experimental data
sets, adjusting numerical parameters within uncertainty bounds to effectively
‘calibrate’ the model to the experiment.

13.2.6 Steady State Solutions: Modelling CW Systems

The primary aim of fibre laser/amplifier modelling is to find the evolution of
optical power along the fibre for all wavelength channels, 𝑃(𝜆, 𝑧, 𝑡). Once
solved, the power emitted by the cavity at either end can be obtained after
correcting for the mirror transmission: e.g. power out the distal fibre end:
𝑃out,rear (𝜆, 𝑡) = 𝑃+ (𝜆, 𝑧 = 𝐿, 𝑡) (1 − 𝑅rear (𝜆)). This requires Eqns. 13.8 and
13.10 to be solved, subject to boundary conditions (which correspond to mirror
reflectivities and injected powers), as formulated earlier in this chapter. While
analytical solutions may not exist, numerical methods can be used, which require
the equations to be discretised in both space and time. We begin by considering
steady-state solutions (i.e. simulating CW lasers), which permits us to ignore
the temporal evolution and consider only the stabilised solution after a long
time period by setting dN/d𝑡 = 0. We thus need to solve dP

d𝑧 for all wavelength
channels simultaneously, where the fibre length 𝐿 is divided up into 𝑀 discrete
segments of size Δ𝑧 = 𝐿/𝑀 . Fig. 13.4 illustrates the discretisation approach for
our problem.

Finding the power at each point in the fibre is a two-part problem. Firstly,
the power flow equation dP

d𝑧 with boundary conditions is a two-point boundary
value problem (BVP). Secondly, this BVP equation depends on the population
densities N(𝑧, 𝑡), which are not known, but are defined by the atomic population
equation dN

d𝑡 at each position along the fibre.
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FIGURE 13.4 Illustration of numerical solution approach where the fibre length is discretised into
𝑚 equal length samples.

13.2.6.1 Solving Rate Equations

We first consider how to solve 𝑑N
𝑑𝑡

= 0 to find N, the vector of population densities
for all relevant 𝑚 levels of the ion in a single length segment. This process is
repeated for each 𝑧 segment. In the matrix formalism, Eqn. 13.10 showed that
this equation has the form:

dN
d𝑡

= LN + W (13.20)

where L is a matrix comprising linear population change rate terms and W is a
matrix of nonlinear terms.

If energy transfer coefficients are not included for a simulation (W = 0),

this will be a system of linear equations, where
dN
d𝑡

is a column vector of 0s.
Note that to ensure a well-determined matrix equation (i.e. avoiding a singular

matrix for L), one of the L matrix rows and a value in the
dN
d𝑡

vector should
be set to enforce the known condition: 𝑁0 + 𝑁1 + ... + 𝑁𝑚−1 = 𝑁doping. Exact
solutions can then be found by inverting the L matrix: N = L−1 dN

d𝑡 . Fast and
efficient numerical recipes are well-known for solving such linear equations [16],
and are readily available in high-level programming languages like Python and
MATLAB.

If the simulation includes energy transfer coefficients, however, the system of
equations contains nonlinear terms (W ≠ 0), preventing simple matrix inversion-
based solving strategies and hindering determination of the exact solution. In
this case, the problem can be approached using root finding algorithms to es-
timate the solution to reasonable precision. Such algorithms are also readily
available in common programming tools, although executions times are signifi-
cantly increased compared to solving linear equations. For any discrete segment
of the fibre, we have now described how to compute the local population levels
subject to known power values at that fibre position.
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13.2.6.2 Solving Power Flow Equations

Returning to consider the power flow equation, we note that this is a difficult
problem since we need to find the power values for multiple wavelengths at each
position in the fibre, such that all values satisfy dP

d𝑧 subject to boundary constraints
at each end. Fortunately, this class of two-point BVP appears in many physical
problems and a number of numerical methods exist to approximate the solutions.

In the field of laser modelling, traditionally, the most commonly used family
of numerical methods have been shooting methods and relaxation methods. For
shooting-based techniques, the unknown power values at one end of the fibre are
estimated, then propagated along the fibre according to 𝑑P

𝑑𝑧
and compared to the

known values for each channel at the other end (e.g. this could involve guessing
the residual pump power for a counter-pumped amplifier, then comparing the
computed pump power at the pump input side to the true pump input). Based on
this comparison, the input estimations are updated and the processes is repeated
until a self-consistent solution is found. A similar iterative approach concerns
relaxation methods, where an estimated solution is propagated back and forth
along the fibre until it convergences to a steady self-consistent state. One of the
greatest challenges with these techniques, and indeed all numerical modelling
of this form, is reliably obtaining convergence (i.e. avoiding simulations which
run forever without solution). Additionally, for practical usage, obtaining con-
vergence in a reasonable time frame is also important. The initial guess solution
(the ‘seed’) provided to the solver, is therefore critically important: the nearer
the guess is to the actual solution, the faster the simulation will converge on that
solution.

On a practical level, however, we note that most modern high-level program-
ming languages include libraries with functionality for efficiently solving such
problems, making use of other optimized mathematical methods and with the
aim of broad applicability to a large class of problems. For example, Python’s
NumPy library and MATLAB provide solve_bvp and bvp4c, respectively,
which can solve a system of equations input as a matrix alongside the boundary
conditions to some desired tolerance of solution (based on finite-difference col-
location methods [17]). Therefore, the optimum solution strategy will depend
on the programming language in which the problem is implemented.

There are also many solving algorithm parameters that can be chosen for op-
timum numerical differential equation solving. Firstly, the discretisation of fibre
length is important: if too many steps are taken, the solver will be unnecessarily
slow, whereas too few will compromise the accuracy of the solution. Practically,
one can find suitable discretisation by adjusting the number of segments until
the simulation output becomes independent of further increase in segment count
(i.e. confirming the grid-invariance of the simulation).

Secondly, for some of the above described methods, an initial guess ‘seed’
solution must be provided—which should be as close to the solution as possible.
If the seed is far from the true solution, even optimized solvers may not succeed.
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FIGURE 13.5 Dy:ZBLAN CW laser cavity schematic.

As a simple approach, one can choose constant seed powers at some reasonable
level based on the inputs. However, an improved seeding ‘guess solution’ can be
offered using knowledge of laser physics, thus maximizing the opportunity for
the solver to quickly converge to the solution. For example, this could include
estimating the pump as following small-signal absorption for the given fibre (of
course, in practice, saturation effects change this, but it provides a good first
guess). Even if a single method does not converge for every simulation input,
these can be manipulated empirically to optimize convergence. The ‘stiffness’
of the set of differential equations to be solved will also vary between laser
transitions of interest, thus the optimum choice of numerical algorithm and its
parameters depends on the exact problem specification.

13.2.7 Case Study: In-Band-Pumped Single-Clad CW Dy:ZBLAN Fi-
bre Laser

To illustrate the insight gained in the laser design process and performance
predictions that can be achieved using simulations, we now present a case study
for a Dy-doped ZBLAN fibre laser. Dy is emerging as a promising rare-earth ion
for mid-IR technology, partly as it offers a spectroscopically simple transition
between the first excited state and ground state for 3 µm emission. This can be
in-band pumped at 2.8 µm and at these wavelengths, there are no known ESA
or energy-transfer effects, avoiding the need for dual-wavelength pumping or
co-doping to achieve efficient lasing.

First, we consider a simple linear cavity comprising 1.2 m single-clad
Dy:ZBLAN fibre with 𝑁doping = 3.66 × 1025 m−3 (0.2 mol%), 12.5 µm core
diameter and 0.16 NA (yielding 2.6 µm single-mode cut-off wavelength). Mir-
rors are included at the fibre ends with a narrow reflection band (i.e. FBGs) at
3.15 µm. Pump light at 2.83 µm is injected at the input through the front mirror,
which has 0% reflectivity at the pump wavelength and 100% reflectivity for the
signal wavelength. The rear-mirror is also transparent for the pump, but is 60%
reflective for the signal, thus acting as the output coupler. Such a laser design is
similar to experiments reported in Ref. [18]. Table 13.1 summarises the model
parameters.
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TABLE 13.1 Modelling parameters for the CW Dy:ZBLAN fibre laser
Parameter Symbol Value

Radiative lifetime 𝜏r,1 48.6 ms
Branching ratio 𝛽10 1

Non-radiative lifetime 𝜏nr,1 650 µs
Doping concentration 𝑁doping 3.66 × 1025 m−3

Fibre background loss 𝑙 0.2 dB m−1

Pump wavelength 𝜆p 2.83 µm
Pump absorption cross section 𝜎01 (𝜆p) 3.83 ×10−25 m−3

Pump emission cross section 𝜎10 (𝜆p) 2.58 ×10−25 m−3

Pump overlap factor Γ (𝜆p) 0.79
Signal wavelength 𝜆s 3.10 µm

Signal absorption cross section 𝜎01 (𝜆s) 2.8 ×10−26 m−3

Signal emission cross section 𝜎10 (𝜆s) 6.8 ×10−26 m−3

Signal overlap factor Γ (𝜆s) 0.74
Front mirror: pump reflectivity 𝑅front (𝜆p) 0
Front mirror: signal reflectivity 𝑅front (𝜆s) 1
Rear mirror: pump reflectivity 𝑅rear (𝜆p) 0
Rear mirror: signal reflectivity 𝑅rear (𝜆s) 0.6

To simulate this system, which is outlined in Fig. 13.5, only two wave-
lengths need to be included in the model: a pump (𝜆p = 2.83 µm) and a signal
(𝜆s = 3.15 µm), resulting in four optical channels in the model, when accounting
for both forwards and backwards propagating directions, as discussed in Sec-
tion 13.2.1. For simplicity, monochromatic channels are assumed, with width
Δ 𝑓 = 0, thus neglecting spontaneous emission. The input pump power is set to
1.6 W, which alongside the mirror reflectivities defines the boundary conditions.
The simulation is executed by numerically solving the power flow equation as
described above, using 𝑀 = 25 segments to discretise the 𝐿 = 1.2 m fibre length.
Fig. 13.6(a) plots the results, showing the forwards- and backwards-travelling
power evolutions. The forwards-travelling pump power 𝑃+ (𝜆p) injected at 𝑧 = 0
is seen to steadily decay along the fibre due to ground-state absorption (GSA).
Since both front and back mirrors have 0 reflectivity for the pump channel, no
power is coupled into the backwards pump channel 𝑃− (𝜆p).

In practice, the 3.15 µm signal power would have grown from spontaneous
emission over many round-trips. Here, by solving for dN/d𝑡 = 0, we find the
steady-state CW results and ignore the temporal evolution. We observe that
the forwards-travelling intracavity signal power 𝑃+ (𝜆s) increases with distance
from 1.89 W to 2.44 W, due to gain from the pumped Dy fibre. At the rear end
(𝑧 = 1.2 m) the 60% reflective mirror extracts 0.97 W as the output power and
the remaining light (1.47 W intracavity power) is reflected into the backwards-
travelling signal channel 𝑃− (𝜆s). Backwards travelling 3.15µm light is amplified
on the return trip, increasing to 1.89 W at 𝑧 = 0, thus forming a self-consistent
solution. The rate equation solutions also enable the inversion along the fibre
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FIGURE 13.6 Dy:ZBLAN laser simulation results: variation of (a) optical power and (b) nor-
malised level populations (i.e. 𝑛0 = 𝑁0/𝑁doping) with distance along the fibre.

0.0 0.4 0.8 1.2 1.6
Pump Power (W)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

O
ut

pu
t 

Po
w

er
 (

W
)

Lasing
Threshold
=0.24 W Slope Efficiency

=71.6%

Experiment
Simulation

FIGURE 13.7 Comparison of laser output power at 3.15 µm for simulations and equivalent exper-
iments (after [18]). Annotations shows the simulated threshold and slope efficiency values.

to be plotted [Fig. 13.6(b), normalised such that 𝑛𝑖 = 𝑁𝑖/𝑁doping], thus offering
insight beyond what could be practically measured. As expected, we see the
strongest inversion near the pumped end.

Additional performance metrics can be obtained by recording the output
power for repeated simulations with varying input parameters. For example,
Fig. 13.7 shows the laser output power as a function of input power (each
simulation data point corresponds to a different set of boundary conditions
and complete execution of the numerical solver). The simulation shows clear
laser behaviour, with a threshold at 0.24 W, followed by linear increase in
power yielding a slope efficiency of 71.6%. This laser was also physically
constructed [18], with component values matched to the simulation, and good
agreement was found between experimental and simulated data over the range
of input powers. The small deviation between the values could be related to
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laboratory measurement/component value uncertainties or to the fact that Dy-
doped ZBLAN is a composite glass and thus the exact experimental composition
may have varied slightly from the literature studies where spectroscopic data was
obtained.

To extend the model, ASE can be included. In this case, we define numerous
additional channels from 2.5–3.5 µm, spaced by 20 nm. The mirror reflectivity
is set as 0 for all ASE channels. Repeating simulations with ASE showed
negligible change in laser behaviour here, as expected since stimulated emission
should dominate in a well-designed laser. However, ASE can strongly influence
laser behaviour when this is not the case. Additionally, the inclusion of ASE
channels in the model enables the ASE spectrum to be resolved. For example,
Fig. 13.8 shows the output ASE spectra at the front and rear end of the fibre for
this simulated setup.

It is interesting to note similar output ASE profiles at longer wavelengths
(> 3 µm), but much stronger backwards travelling ASE at shorter wavelengths.
This can be explained by noting the quasi-four-level nature of the 3 µm Dy
transition and the variation in inversion with length [Fig. 13.6(b)]: at the rear end
of the fibre, the inversion is reduced so there is stronger GSA, which attenuates
ASE that overlaps the absorption band before it reaches the distal end. For ASE
generated at the rear end of the fibre which travels backwards, however, this
effect is less marked since the inversion is stronger (> 50%, thus re-absorption
is weaker) near the front facet. This illustrates how numerical modelling can
provide significant insight not only in predicting performance, but in explaining
observations.

From a laser design point of view, simulations can answer questions pertain-
ing to optimum parameters for a given output specification. For example: what
is the optimum fibre length and mirror reflectivity for efficient high-power emis-
sion? Fig. 13.9 shows the result of repeating the above modelling approach with
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FIGURE 13.9 (a) Simulated laser threshold and slope efficiency as a function of: (a) doped fibre
length; (b) reflectivity of the rear mirror (the output coupling ratio is 100% minus this value).

various fibre lengths and mirror reflectivities. In terms of fibre length, minimum
thresholds of <0.3 W pump power occur for lengths around 1 m. Increasing
length is seen to have a detrimental effect, due to both increased loss (doped
ZBLAN fibre has relatively high background loss) and signal re-absorption.
These effects also reduce the efficiency, thus optimum slope efficiencies exceed-
ing 70% also occur around 1 m fibre length.

Further interesting effects are seen for performance variation with rear mirror
signal reflectivity. Optimum efficiency is achieved for 40–60% reflectivities. For
lower reflectivities, there is less stimulated emission due to reduced feedback,
which leads to reduced pump absorption. As the pump is less utilised, the
efficiency is reduced. At first glance, however, it may seem counter-intuitive that
the efficiency also reduces for increasing reflectivities above 60%. This is due
to the relatively high background loss: higher mirror reflectivities increase the
cavity Q-factor, which increase the average number of cavity round-trips for a
photon before it is emitted. While in doped silica fibre, the loss is sufficiently low
that this does not affect the efficiency, with the 0.2 dB/m loss of doped ZBLAN
fibre, the increased cavity lifetime leads to a longer effective time experiencing
loss and thus, reduced laser efficiency. (This explanation was also verified by
repeating simulations with zero loss, noting that efficiency remained constant
around 70% for reflectivities above 50% in this case). Despite the lower slope
efficiency, increasing reflectivities do always lead to a reduced laser threshold.

Finally, we consider the influence of laser wavelength on performance by
changing the signal channel wavelength for which the narrow-band rear end
mirror is 60% reflective. Fig. 13.10(a) shows the resulting output power from
repeating numerous simulations with different signal wavelengths: watt-level
emission is achieved from 2.85–3.3 µm . Outside of this range the output rapidly
reduces to zero: due to approaching the in-band pump wavelength on the short
wavelength edge and due to the low emission cross section (and thus, reduced
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achieved for the given operating parameters. Adapted from Ref. [4].

gain) at the long wavelength edge.
For mid-IR lasers for sensing applications, wide tunability is a key criterion,

and indeed, such modelling was recently performed to optimize the tunability
of a Dy:ZBLAN swept-wavelength laser for ammonia sensing [4]. To explore
the dependence of tuning range on fibre length, cavity feedback and pump
power, an ensemble of simulations were performed. The results are plotted as
heatmaps in Fig. 13.10(b)–(c) using coloured regions to indicate the minimum
cavity feedback required to achieve lasing at a given wavelength and fibre length.
With a limited choice of components in the laboratory, such heatmaps provide
a useful visualisation of performance as a function of multiple parameters, and
thus enable more efficient selection of laser parameters to achieve a particular
output. Detailed discussion of the underlying physics for the observed behaviour
in Fig. 13.10 can be found in Ref. [4].
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13.2.8 Transient Solutions: Modelling Dynamic Systems

Transient (i.e. time-dependent) solutions are required to model pulsed operation
of a laser such as gain-switching or Q-switching. In these cases, conditions that
were applied in the steady-state solutions in Sec. 13.2.6.1 (i.e. 𝑑N/𝑑𝑡 = 0), are
no longer valid and the task is to find the solutions for the atomic populations
N(𝑧, 𝑡) and powers P(𝑧, 𝑡) in both space 𝑧 and time 𝑡. This is an initial value
problem, where evolution of the system in time is obtained from its initial state
and the known dynamics that are described by the rate equations. Any external
conditions that are changing with time, such as e.g. pump power modulation
in gain-switching or cavity loss modulation in Q-switching, also need to be
included into the model.

To solve an initial value problem of the atomic system 𝑑N(𝑧, 𝑡)/𝑑𝑡, iterative
numerical methods are generally applied. They work by approximating the
future state N(𝑧, 𝑡 + Δ𝑡) from the current state N(𝑧, 𝑡) in small time increments
Δ𝑡, according to the differential equation 𝑑N(𝑧, 𝑡)/𝑑𝑡. Since the equations in
the laser rate models include terms that can lead to rapid variation in time,
stiff methods that are adapted to such properties are usually required to avoid
numerical instabilities in the solving algorithm. Additionally, it is worth noting
that while the spontaneous emission term (Eqn. 13.9) can often be neglected for
CW lasers / steady-state modelling, it can be important to include it for transient
modelling, since this spontaneous emission can seed the amplification process
that describes the light build-up in the cavity.

The equations describing evolution of optical powers (Eqn. 13.8) do not
contain an explicit time dependence; the dependence is in the atomic system
to which they are coupled. To efficiently solve these equations, we note that
the two dimensions, 𝑡 and 𝑧, are coupled by the group velocity of light in the
fibre, 𝑣𝑔. The fibre is thus discretised into longitudinal segments of length Δ𝑧

corresponding to a time step Δ𝑡 = Δ𝑧/𝑣𝑔. The changes in the atomic population
and power evolution equations can then be integrated in time using a fixed-
step 4th-order Runge-Kutta method, where the power values at each position
are shifted one distance step along the fibre each time step. Note that in this
‘synchronous’ approach, the time step is proportional to segment length—thus,
increasing the number of segments at some fixed fibre length will also result in
a shorter time step.

For example, one can set all the initial atomic population into the ground
state, i.e. 𝑁0 (𝑡 = 0) = 𝑁doping, and 𝑁i = 0 for 𝑖 > 0, and set photonic population
P(𝑡 = 0) = 0 for all length segments. In the next time step, all the powers
(of all spectral channels) out of each position element 𝑧 are entered into the
neighbouring spatial segments on each side: 𝑧 + Δ𝑧 for 𝑃+ channels and 𝑧 − Δ𝑧

for 𝑃− channels, respectively. Boundary conditions (Eqns. 13.14 & 13.15) are
also applied at the first and last spatial segments. Therefore, by including pump
power within the boundary conditions, pump light will spread along the full fibre
length in the subsequent time steps, and the laser signal will eventually emerge
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from the generated inversion and spontaneous emission. Transient solutions can
thus offer additional valuable insight into the laser operation, as presented in
case studies of Q-switched Dy and Er fibre lasers in the following sections.

A major downside of using transient solutions, however, can be their com-
putational cost. This is particularly exacerbated with the synchronous approach
described above, with short fibres and long relaxations times in mid-IR fibre
lasers requiring a large number of time steps that may easily exceed tens of
millions before the system will reach the steady-state. Simpler numerical al-
gorithms could be relied upon with the already small time step such as RK4,
while stiff solvers may have a considerable number of internal steps as well.
Typical execution times might be many minutes or even hours for a single run
on a modern computer, compared to only seconds often required to solve for
steady-state CW operation.

In order to increase the performance of the numerical solving algorithms it
can be beneficial to rewrite atomic population and the optical power matrices
of all the individual length segments in larger block matrices, therefore having
only a single large matrix for each time step. This will markedly increase the
size of such matrix, but reduces the number of individual matrix operations
as well, which could considerably speed up the computation of each time step
(depending on the implementation of the numerical algorithm).

We note here that there is no inherent requirement to enforce the above men-
tioned synchronization of the space and time step. An asynchronous approach
with time step size that is independent from the segment length may also be
considered, potentially enabling faster execution by using a larger time step.
However, in this case, care must be taken when choosing step sizes to avoid
numerical instability of the solving algorithm.

13.2.9 Case Study: Q-Switched Dy:ZBLAN Fibre Laser

To illustrate the application of dynamic laser modelling, we re-visit the example
of single-clad Dy:ZBLAN fibre. Specifically, we discuss how the rate equations
can be applied to simulate pulsed mid-IR lasers, which have distinct applications
to CW systems, for instance in time-resolved sensing such as LIDAR.

For this case study, active Q-switching is employed for pulse generation,
whereby an electrically driven switch is placed into the cavity to modulate the
intracavity light. Simulation parameters are similar to Section 13.2.7, except
that here we use 1.6 m fibre length and a signal wavelength of 3.10 µm, to
enable comparisons with recent experiments in Ref. [6]. Fig. 13.11(a) shows the
practical cavity design including an acousto-optic tunable filter (AOTF), which
couples a portion of the incident light into a 1st order diffracted beam. This
beam is reflected by a gold mirror, forming the resonant laser cavity, whereas the
portion of light which is undiffracted passes out of the device undeflected, thus
forming the output beam. The percentage of light which is diffracted depends
on the strength of optoacoustic interaction with acoustic waves in the AOTF,
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FIGURE 13.11 Dy:ZBLAN Q-switched laser cavity: (a) experimental cavity including AOTF; (b)
simplified equivalent cavity which is simulated numerically with a time-varying rear-end reflectivity.

where the acoustic waves are generated by an electrical signal supplied to a
built-in transducer. Therefore, by applying a square-wave modulated voltage to
the transducer, the AOTF can be operated as a Q-switch, i.e. a fast switch to vary
the effective rear mirror reflectivity. Due to a limited phase matching condition,
the AOTF also acts as a 5 nm bandpass filter.

To simulate this system, the action of the AOTF and gold mirror are mod-
elled as a rear output mirror with a time-varying reflectivity [Fig. 13.11(b)]. The
reflectivity varies between 0 and 28%, where 28% corresponds to the estimated
maximum re-injected power when the AOTF is on (accounting for AOTF diffrac-
tion efficiency and coupling losses). Due to the finite AOTF rise time, 𝜏rise, there
is a 25 µs delay between the electrical signal being applied and the acoustic wave
building up, which we model as a linear increase in cavity reflectivity from 0 to
28% over a 25 µs period from the moment an electrical signal is applied.

As in the CW Dy:ZBLAN case study, only one pump and one signal channel
are defined in the model (but for both directions). However, we now also include
spontaneous emission since this can be important for accurately simulating the
initial build-up of light. This is achieved by including the spontaneous emission
term (Eqn. 13.9) and choosing a spectral channel width of Δ 𝑓 = 5 nm, which
corresponds to the filter bandwidth of the AOTF (i.e. effective system gain
bandwidth). The numerical model is then solved using the synchronised space-
time approach described in Section 13.2.8; we note that execution times are
typically on the order of minutes for an implementation using Python running
on a personal computer.

We first consider the radiation build-up dynamics of the Q-switched laser.
A 2 kHz modulation function is applied, comprising of voltage signals lasting
16 µs per cycle (i.e. 3.2% duty cycle; we refer to this as ‘modulator “on” time’
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𝜏ON) and from 𝑡 = 0, the fibre is continuously pumped through the front facet by
a CW 2.83 µm laser with 0.6 W power. The impact of the AOTF rise-time and
modulation parameters are discussed later, enabling us to focus initially on the
temporal evolution of laser properties that lead to stable pulsation, as shown in
Fig. 13.12.

The simulation shows that at 𝑡 = 0, the ground state is fully occupied (𝑁0 =

𝑁doping, or in terms of normalised population densities, 𝑛0 = 1). As CW pump
light starts to be injected at this time, 𝑛0 begins to fall as Dy ions are excited
into the upper manifold (i.e. increased 𝑛1 occupancy). The populations plateau
after ∼500 µs due to pump saturation. During this time, the cavity is not lasing
and the output power is effectively negligible. Even while a resonant cavity is
formed during the first few modulation cycles (i.e. when the reflectivity goes
high), the laser output remains low as intracavity signal power has yet to build
up sufficiently to initiate lasing in this time window.

After ∼1 ms, output pulses are generated during subsequent modulator ‘on’
cycles. The first few pulses to be emitted, however, are not stable: the power of
each pulse fluctuates. After ∼2 ms, the laser settles into a steady-state periodic
Q-switched output, with identical pulses generated each modulation cycle. The
temporal population evolution shows that each output pulse is accompanied by a
small drop in upper state population 𝑛1 (due to depopulation by stimulated emis-
sion), which is gradually recovered by absorption of the CW pump input over the
remaining cycle time while the modulator is off. Practically, the pulse properties
of Q-switched lasers in the steady state are of greatest interest. Therefore, when
discussing Q-switched laser performance, we only consider the pulses proper-
ties after 3 ms simulation time, to ignore the noisy transient pulses in the initial
build-up phase. These pulse properties are now examined in more detail.

Fig 13.13(a) shows the experimentally measured Q-switched output with
𝜏ON = 16 µs AOTF on-time at 0.6 W pump power and 2 kHz modulation
frequency (after Ref. [6]). Note that the measured time-dependent reflectivity is
also shown, which is reasonably approximated in simulations as a linear time-
delayed reflectivity change. Modelling outcomes with these input conditions
also showed stable single pulse operation [Fig 13.13(b)], producing symmetrical
pulses with 330 ns duration, 14.1 µJ energy and 36 W peak power. Such
properties are in reasonable agreement with the experimentally measured values
of 275 ns, 11.5 µJ, 39 W.

With a longer AOTF on-time (i.e. longer duty cycle) of 𝜏ON = 50 µs, the
simulation also captures the experimental observation of satellite pulses being
produced after the main pulse within each modulation cycle [Fig. 13.11(c)–(d)].
This is a unwanted phenomena which limits the pulse peak power and could
cause timing errors in applications such as time-resolved sensing.

Having confirmed that the simulation is well matched to experimental re-
sults, the model can then be used identify routes to improved Q-switched laser
performance: specifically, identifying how to achieve greater pulse peak powers.
It is known that there are numerous possible causes for multipulsing in pulsed
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FIGURE 13.12 Dy:ZBLAN 2 kHz Q-switched laser simulation start-up dynamics. The modulator
on-time is 16 µs per cycle, shown by the short bursts of increased rear-mirror reflectivity. The
pump is applied at 𝑡 = 0, causing the inversion to build-up (normalised upper state population 𝑛1
increases). Note that no pulses are generated for the first few modulation cycles, but after ∼2 ms, the
laser settles into a steady Q-switched operation, generating a stable pulse train.

lasers, and a solution was sought to avoid this. Specifically, the model permitted
testing of the hypothesis that the primary cause was the slow switching speed
of the modulator. This could be explained physically by the fact that after the
electrical MHz drive signal is applied to the AOTF, the cavity loss reduces over
a period of 𝜏rise = 25 µs as acoustic waves slowly build-up and diffract light
towards the cavity mirror. A pulse will start building-up in the cavity, however,
as soon as the loss falls below the amount of stored gain, which can be before the
AOTF has finished switching. In this case, the pulse build-up can be faster than
the rate of switching, forming a complete pulse before the cavity loss minima is
reached. Residual inversion remains in the doped fibre, therefore, and as the loss
continues to gradually fall, the emission process repeats to extract this energy:
thus forming multiple low-energy pulses per Q-switching cycle [7].

By repeating simulations with the modulator rise time reduced to 𝜏rise = 1 µs,
substantial improvement was observed [Fig. 13.11(e)]. The model predicted the
generation of a single pulse per modulation cycle with 90 ns duration, 49µJ pulse
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FIGURE 13.13 Steady-state dynamics actively Q-switched 3.1 µm Dy laser with 0.6 W pump
power: (a) experimental and (b) simulated single-pulse operation with optimum 𝜏ON = 16 µs AOTF
on-time; (c) experimental and (d) simulated multi-pulse operation with 𝜏ON = 50 µs; (e) simulated
single-pulse operation with 50 µs on-time but a faster modulator rise time of 𝜏rise = 1 µs. Adapted
from: Ref. [6].

energy and 402 W peak power—over an order of magnitude improvement. This
shows that with faster switching, a single pulse ‘sees’ larger gain available during
its build-up time and thus, can extract significantly more energy. Multi-pulsing
is therefore avoided.

This example demonstrates the utility of numerical modelling for offering
additional insight beyond experimental measurements, in addition to permitting
exploration of arbitrary parameter spaces to identify improved laser designs. For
this example, simulation results paved the way to a higher energy Q-switched
laser design by suggesting the AOTF to be replaced by a faster acousto-optic
modulator (which are already commercially available, although this has yet to be
implemented). Without such a numerical model, it may have taken considerably
more experimental effort, time and financial resources to reach such a conclusion.
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13.2.10 The Er Fibre Laser: Modelling Complex Systems

The energy level structure of Er is significantly more complex than Dy and many
levels must be included in models for mid-IR Er lasers. Weak non-radiative
processes in low-phonon-energy glasses such as ZBLAN result in long effective
lifetimes, allowing significant atomic population to be established in excited
levels high above the ground state. Energy transfer (ET) processes such as
energy-transfer upconversion (ETU) and cross-relaxation (CR) are also often
present in Er lasers, which couple to those high lying levels, making it necessary
to include them in the rate equation model. The energy levels and currently
known transitions in Er:ZBLAN fibre that are relevant for both laser operations
at 2.8 µm and 3.5 µm are illustrated in Fig. 13.14.

The fibre lasers in the two case studies that follow are quite different from
each other in term of laser design and operation schemes, but in their models
they are distinguished only by a minor number of parameters. In fact the Er
laser in the case study at 3.5 µm based on a recently developed scheme with dual
wavelength pumping also includes a nascent laser operation at 2.8 µm. Thus
having 2 pumps, 2 signals and 7 levels in Er makes it a worthy showcase of
a complex system that is well suited for the matrix modelling formulation as
introduced in Sec. 13.2.3. The model of a heavily doped Er:ZBLAN fibre laser
at 2.8 µm featured in the last case study is of comparable numerical complexity,
and we use it to demonstrate how such models can help with validation of known,
or determination of unknown, parameters and their values.

Values for all the parameters used in the model for both Er fibre laser cases are
given in Tables 13.2 and 13.3. Table 13.2 includes the parameters constituting
the linear part of the rate equation system (Eqns. 13.11 and 13.12), including
all radiative and non-radiative transfers except the energy transfer processes, as
well as fibre laser design properties for both cases. Values of the parameters that
were not given or are not relevant for the case are omitted, while the values that
are relevant, but were unknown when these model studies were conducted, are
given in brackets.

The parameters of the energy transfer (ET) processes 𝑤𝑖 𝑗𝑘𝑙 that describe the
transition from initial levels 𝑖 and 𝑗 to levels 𝑘 and 𝑙 form the nonlinear part of
the rate equation system (Eqn. 13.13). The values of the three ET parameters,
𝑤1103,𝑤2206, and𝑤5031 were measured in bulk at different Er concentrations [19].
A model-based study has shown these ET processes to be beneficial for laser
operation, enabling an efficient energy recycling regime with slope efficiencies
reaching above 50% in heavy doped fibres [20].

However, significantly weaker ET parameters were later proposed based on
a comparison of a model with a fibre laser experiment [1]. The former became
known as the strongly interacting (SI) and the latter as the weakly interacting
(WI) models, i.e. higher or lower values of the same ET parameters that are
given in Table 13.3 for two doping concentrations corresponding to fibres used
in the two case studies. We should note that the ET parameters are not expected
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TABLE 13.2 Linear model parameters of the Er:ZBLAN fibre lasers
Parameter Symbol Case Study at 3.5 µm Case Study at 2.8 µm
Relaxations from Ref. [5] same as in Case at 3.5 µm
Effective lifetimes 𝜏1, 𝜏2, 𝜏3 9.9 ms, 7.9 ms, 8 µs

𝜏4, 𝜏5, 𝜏6 177 µs , 530 µs , 5 µs Same as left-hand column
Branching ratios 𝛽21, 𝛽20, 𝛽32 0.182, 0.818, 0.999

𝛽30, 𝛽43, 𝛽42 0.001, 0.808, 0.008
𝛽41, 𝛽40, 𝛽54 0.009, 0.175, 0.285
𝛽53, 𝛽52, 𝛽51 0.029, 0.014, 0.193
𝛽50, 𝛽65, 𝛽60 0.479, 0.990, 0.010

Cross-sections from Ref. [5] from Ref. [1]
Pump 1 wavelength 𝜆p1 985 nm 976 nm
Pump 1 absorption 𝜎02 (𝜆p1) 9.3 ×10−26 m−3 21.0 ×10−26 m−3

ESA 1a 𝜎26 (𝜆p1) 2.0 ×10−26 m−3 11.0 ×10−26 m−3

ESA 1b 𝜎36 (𝜆p1) 25.5 ×10−26 m−3

Pump 1 emission 𝜎20 (𝜆p1) 11.5 ×10−25 m−3 16.1 ×10−26 m−3

𝜎62 (𝜆p1) 6.75 ×10−26 m−3 21.1 ×10−26 m−3

𝜎63 (𝜆p1) 47.8 ×10−26 m−3 17.4 ×10−26 m−3

Pump 2 wavelength 𝜆p2 1973 nm
Pump 2 absorption 𝜎24 (𝜆p2) 30.0 ×10−26 m−3 30.0 ×10−26 m−3

Pump 2 emission 𝜎42 (𝜆p2) 36.1 ×10−26 m−3 36.1 ×10−26 m−3

ESA2 from [3], SI 𝜎46 (𝜆p2) (0.7 ×10−26 m−3)
Signal 1 wavelength 𝜆s1 2800 nm 2800 nm
Signal 1 absorption 𝜎12 (𝜆s1) 9.5 ×10−26 m−3 4.7 ×10−26 m−3

Signal 1 emission 𝜎21 (𝜆s1) 17.1 ×10−26 m−3 8.1 ×10−26 m−3

Signal 2 wavelength 𝜆s2 3470 nm
Signal 2 absorption 𝜎43 (𝜆s2) 6.9 ×10−26 m−3

Signal 2 emission 𝜎43 (𝜆s2) 5.2 ×10−26 m−3

Fibre laser parameters from Ref. [5] from Ref. [1]
Doping concentration 𝑁doping 2.7 × 1026 m−3 9.6 × 1026 m−3

Fibre length 𝐿 0.18 m 4.0 m
Core area 𝐴core 0.87 ×10−10 m−2 3.0 ×10−10 m−2

Overlap factors Γ (𝜆p1) 0.96 0.009
Γ (𝜆p2) 0.83
Γ (𝜆s1) 0.62 1.0
Γ (𝜆s2) 0.41

Background losses 𝑙 (𝜆p1) 3.0 ×10−3 m−1

𝑙 (𝜆s1) 23.0 ×10−3 m−1

𝑙 (𝜆s2) 60.0 ×10−3 m−1

Mirror reflectivities 𝑅− (𝜆p1) , 𝑅+ (𝜆p1) 0.04, 0.04
𝑅− (𝜆s1) , 𝑅+ (𝜆s1) 0.04, 0.96
𝑅− (𝜆s2) , 𝑅+ (𝜆s1) 0.87, 0.99
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FIGURE 13.14 Energy levels and transitions in Er:ZBLAN fibre laser operation at 2.8 µm or
dual-wavelength pumped at 3.5 µm. Level populations are denoted as used in the models for both of
those lasers and their spectroscopy designations are given on the left. The transfer processes include
pump and laser transitions from the ground state absorption (GSA), excited state absorptions (ESA)
for pump at both wavelengths 𝑃1 and 𝑃2, and laser signals 𝑆1 and 𝑆2, and energy transfer processes
among two ions. Many radiative (fluorescence) and non-radiative multi-phonon (MP) relaxation
processes are omitted from the diagram, but are included in the model through their branching ratios
as can be read from Table 13.2. Adapted from [5].

to differ between bulk and the fibre made out of the same material, therefore the
exact causes for this discrepancy are not yet fully understood.

Recently a fourth ET parameter 𝑤4251 was discovered [21] and its value was
found to be only slightly dependent on the Er doping concentration. However,
because the other three ET parameters were relied upon in its determination
process, two distinct values were reported to go with with SI and WI parameters
[21]. A new excited state absorption process was also found after that study, that
causes quenching of the laser operation at 3.5µm [3] and this is also included in
Table 13.2 for completeness, although it was not used in this case study. It may
therefore have some implications in determining the values of other processes,
in particular 𝑤4251.

13.2.11 Case Study: Dual-wavelength pumped Er Fibre Laser at 3.5
µm

The dual-wavelength (DWL) pumping technique [22] takes advantage of the long
lifetime of level 4𝐼11/2 in Er, which is level 𝑁2 in our model (see Fig. 13.14). The
first pump at wavelength around 980 nm (𝑃1) is to excite ions from the ground
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TABLE 13.3 Energy transfer parameters of the Er:ZBLAN fibre lasers
Parameter Symbol Case study at 3.5 µm Case study at 2.8 µm
Doping concentration Er 1.7% mol 6% mol
Doping number density 𝑁doping 2.7 × 1026 m−3 9.6 × 1026 m−3

Strongly interacting (SI) from [21]
ETU1 (SI values) 𝑤1103 1.4 ×10−24 m3 s−1 3.6 ×10−23 m3 s−1

ETU2 (SI values) 𝑤2206 0.3 ×10−24 m3 s−1 1.2 ×10−23 m3 s−1

CR1 (SI values) 𝑤5031 0.8 ×10−24 m3 s−1 2.7 ×10−23 m3 s−1

CR2 (SI values) 𝑤4251 2.5 ×10−23 m3 s−1 (3.6 ×10−23 m3 s−1)
Weakly interacting (WI) from [21]
ETU1 (WI values) 𝑤1103 0.4 ×10−24 m3 s−1 1.0 ×10−24 m3 s−1

ETU2 (WI values) 𝑤2206 0.1 ×10−24 m3 s−1 0.3 ×10−24 m3 s−1

CR1 (WI values) 𝑤5031 0.2 ×10−24 m3 s−1 0.5 ×10−24 m3 s−1

CR2 (WI values) 𝑤4251 1.7 ×10−23 m3 s−1 (1.4 ×10−23 m3 s−1)

level 𝑁0 into 𝑁2, which acts as an elevated ‘virtual’ ground state. The second
pump at wavelength around 1975 nm (𝑃2) is then further exciting the ions into
𝑁4. Lasing at 3.5 µm takes place between levels 𝑁4 and 𝑁3, while 𝑁3 is subject
to rapid decay back into 𝑁2. Such operation is significantly more efficient than
pumping from the real ground level, since less power is wasted by decay from
𝑁2 to the ground state 𝑁0 and only a small amount of power 𝑃1 is needed to
maintain an inversion. At low 𝑃2 powers, lasing at 2.8 µm on the 4𝐼11/2 →4 𝐼13/2
transition between levels 𝑁2 and 𝑁1 appears as well.

A numerical model of the DWL pumped laser at 3.5 µm was developed
at University of Adelaide [5] and implemented in the MATLAB programming
environment using the RK4 method with the synchronous transient approach. At
each time step the new transition rates based on the previous state and new states,
based on the new rates, were calculated for the whole system, i.e. all populations
and powers in all segments, concurrently. These rate and state matrices were
written in two larger 2D block matrices to speed up the calculations as discussed
in Sec. 13.2.8. Results were saved in into one 3D state-time matrix at reduced
temporal resolution to save memory.

Multiple simulation instances were run concurrently on a “Phoenix” high
performance computer provided by the University of Adelaide. A multi simu-
lation session took 5 hours using 10 longitudinal segments and solving for 20
ms in the model, which is comparable to simulations run on a desktop PC with
concurrency up the the number of its cores. The modelling results were then
tested on three previously published experiments and good agreement was found
with all of them using the WI set of ET parameters from the Table 13.3. Another
successful study was reported later for the Q-switching operation using the same
model [23].

Here we present some basic results from modelling one of those experiments,
using a single-clad Er:ZBLAN fibre with 1.7% mol Er-doped core, 10.5 µm
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diameter. All the parameters required to describe the particular fibre laser
design are listed at the bottom of Table 13.2. Eight optical channels (elements
of the power matrix) were used in this model altogether, two for each pump
𝑃+

1 and 𝑃+
2 , and two for each laser transition 𝑆+1 and 𝑆+2 at 2.8 µm and 3.5 µm,

respectively. Pump powers in ‘+’ direction are launched into the front end of the
fibre (𝑧 = 0) and the output coupler is located at the rear end of the fibre (𝑧 = 𝐿).
Therefore, the output powers of the transmitted signals are also the ‘+’ direction.
Spontaneous emission was included in the model to initiate lasing on both
transitions, therefore simulating realistic starting of the laser and competition
between both transitions, as this aspect is important in design optimization of
such lasers.

First, the development of the steady-state state condition is studied after
turning on constant pumping with both pumps, 𝑃1 and 𝑃2, from a single end
at input powers 194 mW and 2 W, respectively. This is set in the model by
initializing all populations N and laser signal power 𝑆1 and 𝑆2 to zero, while
setting the boundary conditions of 𝑃+

1 (𝑧 = 0) = 194 mW and 𝑃+
2 (𝑧 = 0) = 2 W.

The temporal evolution of Er energy level populations in segment no. 5 in the
middle of the fibre are shown in Fig. 13.15, as that segment is most representative
for all 10 segments. The longitudinal dependence of all parameters (not shown)
is similar to the Dy cases, stemming from the characteristic quasi-exponential
pump absorption in single end fibre pumping. The intracavity power of the laser
signal 𝑆+2 in the same segment propagating in the ‘+’ direction at 3.5µm is also
shown in the same figure. Note that significant laser power starts at 𝑡 = 1 ms,
after the start of the pumping process at 𝑡 = 0 ms, thus showing the time it
takes to build up enough population inversion in levels 𝑁4 and 𝑁3 to overcome
the losses (threshold condition). The laser power rises much faster than the
populations after that time.

A significant population builds in level 𝑁1 due to its long effective lifetime
𝜏1 = 9.9 ms and weakly interacting ET processes, resulting in about 20 ms for
the system to reach the steady-state in these conditions. Note that a snapshot
of the populations and powers in this last instant (or any time after that) will be
equal to the solutions that could be obtained via methods adapted directly for
the steady-state as presented in Sec. 13.2.6. Such approach would most likely be
faster, i.e. requiring significantly less computational time, but all the temporal
dynamics that follows in the rest of the Er case studies would not be obtained
with such an approach.

With all the transient information available, however, it is instructive to have
a closer look at the starting of the laser even for CW operation, i.e. having
the same constant (CW) pump power as before. In Fig. 13.16(a) the initial
transient of the intracavity laser powers for both transitions 𝑆+1 at 2.8µm and
𝑆+2 at 3.5µm are displayed in the same mid segment, where CW pump power
starts abruptly at 𝑡 = 0 ms. Relaxation oscillations appear at both transitions,
and are more pronounced with 𝑆1 signal due to higher cross-sections for that
transition compared to 𝑆2 signal. It is also worth noting that a small amount of
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FIGURE 13.15 Temporal evolution of Er energy level populations and intracavity laser power of
𝑆+

2 at 3.5µm from the model in the segment no. 5 in the middle of the fibre after turning on both
pumps, 𝑃1 and 𝑃2, at time t = 0 ms. Adapted from [5].

power remains in the 𝑆1 signal channel (20 mW intracavity power in this case)
even after 𝑆2 builds up and acts to suppress 𝑆1, the amount depending on the 𝑃2
power.

An interesting phenomenon that was also observed experimentally in Ref. [5]
appears in pulsed operation of this laser when 𝑃2 pump is pulsed at low powers.
Results from the model of such behaviour are shown in Fig. 13.16(b), where the
𝑃2 pump power was set to operate in 300 µs long square-shaped pulses with a
frequency of 1 kHz and 200 mW peak power. Signal 𝑆+1 at 2.8 µm is starting first
again, featuring a single spike from relaxation oscillations and running longer
than the pump in each single pulse. At 4 ms, a signal 𝑆+2 at 3.5 µm starts
to appear that is only about 100 µs long, much shorter then the pump, and it
always appears alternatively with 𝑆1. Transient modelling is thus very helpful
in studying the effects of laser design and operational parameters on laser pulse
formation, including optimisation of output pulse durations/peak powers.

After having shown some details that transient models of such system can
capture, we now approach a more practical problem. That is, for example, to
study the input-output power characteristics of the fibre laser as a function of
𝑃2 pump power while holding 𝑃1 constant at 194 mW. The results shown in
Fig. 13.17(a) are in reasonable agreement with the experiments performed in
[22] for both CW and pulsed operation. The threshold power obtained from
the model of slightly above 100 mW matches experiments well. The slope
efficiencies at lower 𝑃2 powers and the appearance of roll-over at higher 𝑃2
powers are also in agreement with the experiment. However, the model predicts
less significant saturation with increasing 𝑃2 than observed experimentally, with
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FIGURE 13.16 (a) Simulated results for the intracavity powers of both laser signals 𝑆+
1 at 2.8 µm

and 𝑆+
2 at 3.5 µm with CW pumping after starting both pumps, 𝑃1 and 𝑃2 at 𝑡 = 0 ms in the model.

(b) Simulated results for both intracavity powers 𝑆+
1 at 2.8 µm and 𝑆+

2 at 3.5 µm with constant 𝑃1
and pulsed 𝑃2 with 300 µs long pulses at frequency 1 kHz, starting at 𝑡 = 0 ms. Adapted from [5].

larger discrepancy in the pulsed regime. The authors note in Ref. [5] that this
could be explained due to the thermally induced misalignment of the fibre tip
to the butt-coupled mirror in their experiment, effectively reducing the signal
reflectivity at the boundary.

Transmitted pump powers 𝑃+
1 and 𝑃+

2 that emerge from the fibre end opposite
to the pump input can be measured and used as additional validation of the
modelling results. As shown in Fig. 13.17 (b) there is a good agreement between
modelled and experimental data for both pumps. Nearly all of the power in 𝑃+

1 is
absorbed in the fibre, while the absorption of 𝑃+

2 is decreasing—note the slight
change in slope around 𝑃2 ∼1 W, which corresponds to the start of roll-over in
the signal power 𝑆2.

The absorption of 𝑃2 depends on the cross-sections 𝜎24 (𝜆p1) and 𝜎42 (𝜆p1)
and populations 𝑁2 and 𝑁4. In Fig. 13.17(c), populations of all levels in the
model are plotted, averaged over the entire fibre length. There is a steep decrease
in 𝑁2 and increase in 𝑁4 below the laser threshold powers of 𝑃2, but there is
imperfect clamping above the threshold, which causes saturation of the laser
power 𝑆2.

In order to learn more about the underlying level population dynamics, one
can calculate the actual rates of all the transfer processes from the model results.
Most important are the one that are directly involved in the dynamics of the
laser levels, namely 𝑁2 ("virtual ground state"), 𝑁3 (lower laser level) and 𝑁4
(upper laser level). Discussion of these intricacies is outside of the scope of this
Chapter, however, and the reader is kindly referred to Refs. [5, 23] for further
information.

Instead we show in Fig. 13.17(d) the results from the model with variation
of the two most influential parameters: the lifetime of level 3, 𝜏3, and the energy
transfer process 𝑤4251. The results clearly show that a dominant limitation on
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FIGURE 13.17 (a) Laser output power from modelling results and experimental measurements
in CW and pulsed pump regimes. (b) Transmitted (unabsorbed) pump powers 𝑃1 at 985 nm and
𝑃2 at 1973 nm from modelling results and experimental measurements in CW pump regimes. (c)
Populations of all levels averaged over the entire fibre length. (d) Comparison of the measured laser
power and model results with reducing parameters 𝜏3 and 𝑤4251 from their nominal values of 8 µs
and 1.7 ×10−23 m3 s−1, respectively. Adapted from [5].

laser performance is the accumulation in 𝑁3, since that is alleviated by reducing
the lifetime 𝜏3 by an arbitrary factor of 8 (and thus increasing the transfer rate
by the same factor), while 𝑤4251 is shown to have a significant effect as well.

13.2.12 Case Study: Heavily doped Er:ZBLAN Fibre Laser at 2.8µm
Laser operation at 2.8 µm alone is simpler than in the previous case, with pump
transition 𝑃1 from the ground state 𝑁0 into 𝑁2, and laser transition between
the populations 𝑁2 → 𝑁1 as illustrated in Fig. 13.14. Therefore this would
be a simple four-level laser in the absence of the transitions from the excited
states, and such conditions indeed appear at very low doping concentrations.
However, because of the long lifetime 𝜏1, which is even longer than 𝜏2, this
creates a population bottleneck in 𝑁1 that causes the laser operations to be self-
terminating. At high doping concentrations, however, the energy transfer (ET)
processes between neighbouring ions become strong enough to alleviate this
bottleneck to largely drive the depopulation process, thus enabling efficient CW
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laser operation. Knowing the values of these parameters is therefore crucial in
modelling and understanding the laser operation, both at 2.8 µm and also 3.5 µm
as discussed in the previous case.

We devote this last case study for brief a look into role of the ET parameters
in the operation at 2.8 µm, with 𝑤1103, 𝑤2206 and 𝑤5031 included, while 𝑤4251
was not included as it was not yet know at the time. Nonetheless all their values
are included in Table 13.3 for completeness. We should stress at this point that
it is not the intent of this section to present and explain all of the many other
effects that are also involved, as that is covered in other chapters of this book and
in the references provided here. Our intent is only to offer a glimpse of how the
modelling, and in particular the transient solutions, can offer useful insight into
this problem.

The fibre laser setup used in this case study comprised fibre with 30 µm core
diameter, doped with 6% mol Er, and D-shaped cladding with effective diameter
of 350 µm. The cavity is composed of a 4 m long doped fibre, with feedback
provided by Fresnel reflection at the front end (𝑧 = 0) and a broadband HR
mirror at the rear end (𝑧 = 𝐿), thus forming a free-running CW fibre laser. The
diode pump 𝑃1 at 976 nm wavelength is coupled into the cladding from the front
side propagating in the ‘+’ direction, while the signal 𝑆1 is confined to the core
and 𝑆−1 is coupled out at the front end.

Note that this is essentially the same Er rate equation model as described
in the previous case with dual-wavelength pumping and operation on 3.5µm
transition, except for the differences in the fibre laser design parameters as
described above and collated in Table 13.2, as well as not using second pump 𝑃2
and second signal 𝑆2. Transient solutions were obtained with similar space-time
synchronous approach as in the previous case.

The results from the model are shown in Fig. 13.18(a) and (b) where CW
input pump power 𝑃+

1 is applied from 0 to 15 ms using both SI and WI parameters,
respectively. Shorter pump pulse duration (15 ms) than the total simulated time
(20 ms) was chosen, in order to study both transients, when the laser (pump) is
switched on and also when it is switched off.

In both of these cases the laser output signal 𝑆−1 starts almost instantly and
with strong relaxation oscillations. It reaches steady state in less than 15 ms.
The rise time and the final (CW) power of the signal is markedly different in
both regimes.

Fluorescence signals can offer additional insight into the dynamics of atomic
populations since fluorescence emitted at distinct wavelengths is proportional
to population in individual corresponding levels. Obtaining accurate absolute
relations can be very difficult in practice, but the relative (normalized) dynamics
is straightforward. In Fig. 13.18(a) and (b) the dynamics of the population 𝑁5 (𝑡)
normalized to 𝑁5 (𝑡 = 15µs) are shown, which correspond to fluorescence at 551
nm. This fluorescent line is dominant in Er lasers, and 𝑁5 is strongly coupled to
both laser levels 𝑁1 and in particular 𝑁2 (see Er level diagram in Fig. 13.14).
Fluorescent lines at 1535 nm and 995 nm that correspond directly to 𝑁1 and 𝑁2
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FIGURE 13.18 (a) and (b) Transient solutions of the model for laser output signal power 𝑆−
1

at 2.8 µm (solid black lines) at 10 W input pump power, and normalized 𝑁5 population that is
proportional to fluorescence signals is shown for 5–40 W input pump power for both SI (a) and WI
(b) values of the ET parameters. (c) Experimental measurement of the same conditions, except for
25 ms of pump on time. (d) Measured laser signal power (black dots) and fluorescence overshoot
(green dots), and results from the model with SI (full lines) and WI (dashed lines) parameters. The
dotted line is fluorescence overshoot multiplied by 3 obtained with the same WI parameters.

might be considered even better choices, but their time dependent signals turned
out difficult to be measured in our experiments.

Experimentally measured transient laser output powers and fluorescent sig-
nals are shown in Fig. 13.18(c), where different time scales are to be taken into
account. Model results with WI parameters display much better, though far
from perfect, agreement with experimental results. Slow fluorescent rise time at
low input pump powers, and the trend of increasing overshoot of its steady-state
intensity with increasing pump powers only appear with the WI parameters.
Such trend is indeed observed experimentally, even more pronounced than in
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our model results. The laser threshold, its slope efficiency, rise times of laser
and fluorescence signals, the trend of its overshoot are all better matched with
the WI parameters as can be seen in Fig. 13.18(d) and Table 13.4.

TABLE 13.4 Modelling results and experimental measurements in Er:ZBLAN
fibre laser

Observable parameter Model SI Model WI Measurement
Slope efficiency 49% 22% 21%
Laser threshold 1.2 W 0.4 W 0.5 W
Rise time of the laser signal power 2.2 ms 5.2 ms 3.9 ms
Rise time of the fluorescence signal 1.2 ms 4.4 ms 3.7 ms
Overshoot in the fluorescence signal 4.4% 9.3% 26%
Trend of the overshoot with power decreasing increasing increasing

The WI parameters were in fact set to maximise the overall match between the
model results and experimental measurements. Values of many other parameters
were also adjusted in the model as part of their validation, in order to evaluate
the sensitivity of the model within the range of their uncertainties (a similar
approach was carried out in the previous case as well). The three ET parameters
𝑤1103, 𝑤2206 and 𝑤5031 were found to be the most influential to the efficiency
of operation and power scaling of the fibre laser, with ESA 𝜎26 (𝜆p1) having a
signifiant role as well due to the growing populations in both laser levels 𝑁1
and 𝑁2. Similar behaviour with notable large and increasing green fluorescence
overshoot was observed experimentally using other fibres, with two of those
coming from a different manufacturer than the fibre used in the fibre laser setup.
Furthermore, good agreement with other published experiments to date was
found in a subsequent model study using the WI parameters in Ref. [24], which
also included the effects of pump and laser wavelengths, and temperature in the
fibre core.

We should nonetheless stress that such heuristic approach to finding (or
validating) parameters based on any single experiment or otherwise limited
dataset may of course result in biased or limited scope of validity of the obtained
(calibrated) results. However, when carefully approached and considering a
large set of experimental data, this is without doubt a powerful extension of the
direct measurement method.

13.3 THERMAL MODELLING

Absorbed pump power that is not converted into the optical signal or emitted
out of the fibre as fluorescence, ends up dissipated as heat in the doped core
of the fibre. This results in increased temperature of the fibre core, that can
in turn have significant effects on laser operation. Many of the processes in
laser ions that are included in the rate equation model from previous sections
are temperature dependent, in particular the effective cross-sections (although
typical rate equation modelling uses input spectroscopic parameters measured
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only at room temperature—limiting validity at high operating temperatures).
Moreover, the thermal effects can have significant and deleterious effects on the
fibre and its guiding properties that ultimately provide a limit to the reachable
output power or lifetime of the fibre laser [25].

Understanding the temperature distribution can therefore be an important
aspect of optimising fibre laser designs, especially in the high-power regime. It
turns out that this ‘high-power regime’ for mid IR lasers may already be reached
with tens of watts, which is significantly lower than hundreds of watts typically
observed in near-IR lasers. The two main reasons for this disparity are that
the quantum defects are generally much larger in mid-IR lasers, and thermal
properties of low-phonon-energy glasses are inferior as compared to fused silica
that is almost universally used in the near-IR. In extreme cases such as e.g. in
3 µm lasers, strong water absorption and hygroscopic properties of ZBLAN
glass may even lead to runaway thermal runaway effects than limit the lifetime
of unprotected fibre tips to only a few hours [26].

Finding the temperature distribution is generally a three dimensional and
time-dependent problem, but it can be significantly simplified in most cases of
practical importance. Due to the fibre geometry, which is essentially a cylinder
where the transverse dimensions are much smaller than the typical length 𝐿, the
corresponding heat flow in the lateral direction can be neglected in comparison to
the transverse direction. Moreover, if we limit our interest to the final temperature
during laser operation, then the problem becomes of the steady-state type, even
for pulsed operation as long as the repetition rate is much higher than the inverse
thermal relaxation time of the fibre, which is of the order of ms to s. Additionally,
with the possible exception of fibres with a highly eccentric core, simplification
due to radial symmetry can be applied. In Fig. 13.19 a typical fibre cross-section
is shown with a core, cladding and coating together with the heat source in the
core and the outside boundary condition used in our model formulation.

FIGURE 13.19 Geometry in the fibre thermal model with core, cladding and coating domains. The
heat source is only in the core (red area) and the ambient defines the boundary condition (blue area).
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The fibre temperature can thus be modelled by heat equations expressed in
radial coordinates [25], taking the form:

𝑘
𝑟

𝜕
𝜕𝑟

(
𝑟 𝜕𝑇
𝜕𝑟

)
= −𝑄h, 0 ≤ 𝑟 ≤ 𝑟c,

𝑘
𝑟

𝜕
𝜕𝑟

(
𝑟 𝜕𝑇
𝜕𝑟

)
= 0, 𝑟c < 𝑟 ≤ 𝑟e,

(13.21)

where 𝑘 is thermal conductivity in the core/cladding (𝑘c = 𝑘d ∼ 0.7 W/mK for
ZBLAN glass) and coating material (𝑘𝑒 ∼ 0.2 W/mK for polyacrylate), while
𝑄h is the heat source density that is confined to the doped core; 𝑟c, 𝑟d and 𝑟e are
radii of the core, cladding and coating, respectively.

The boundary conditions in the centre of the fibre (𝑟 = 0), at the inner
interface between the cladding and the coating (at 𝑟 = 𝑟𝑑), and at the fibre
coating and ambient interface (at 𝑟 = 𝑟𝑒) can be described as follows:

𝑑𝑇
𝑑𝑟

= 0, 𝑟 = 0,
𝑘d

𝑑𝑇
𝑑𝑟

= 𝑘e
𝑑𝑇
𝑑𝑟

, 𝑟 = 𝑟d,
𝑑𝑇
𝑑𝑟

= ℎ
𝑘e

[𝑇a − 𝑇] , 𝑟 = 𝑟e.

(13.22)

No heat flow is possible at the very centre due to its symmetry and therefore,
the temperature gradient is equal to zero at that point. The heat flow at the fibre
external side is determined by the heat transfer coefficient ℎ from the coating to
the surrounding medium (e.g. air), assumed at constant ambient temperature 𝑇a.
The condition at the inner boundary between the cladding and coating at 𝑟 = 𝑟d
is simply ensuring the required continuity of the heat flow on either side of the
interface.

The above equations can be solved analytically, resulting in the the radial
distribution for the temperature in the core, the cladding and the coating:

Δ𝑇 (𝑟) =

Δ𝑇0 − 𝑄h𝑟
2

4𝑘c
, 0 ≤ 𝑟 ≤ 𝑟c,

Δ𝑇0 − 𝑄h𝑟
2
c

4𝑘c

[
1 + 2 ln

(
𝑟
𝑟c

)]
, 𝑟c < 𝑟 ≤ 𝑟d,

Δ𝑇0 − 𝑄h𝑟
2
c

4𝑘c

[
1 + 2 ln

(
𝑟d
𝑟c

)
+ 2𝑘d

𝑘e
ln

(
𝑟
𝑟d

)]
, 𝑟d < 𝑟 ≤ 𝑟e.

(13.23)

The maximum temperature increase Δ𝑇0 = Δ𝑇 (𝑟 = 0) is in the centre of the
fibre:

Δ𝑇0 =
𝑄h𝑟

2
c

4𝑘c

[
1 + 2 ln

(
𝑟d
𝑟c

)
+ 2𝑘d

𝑘e
ln

(
𝑟e
𝑟d

)
+ 2𝑘e
ℎ𝑟e

]
. (13.24)

The heat source power density can be obtained from the absorbed pump
power and the fraction of that power that is dissipated as heat. The locally
absorbed power can either be obtained from the exponential law using constant
absorption coefficient, or from the longitudinal power evolution in the rate equa-
tion model. The former is simpler while the latter may be required in the case
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of substantial saturation (or bleaching) of the pump absorption when sufficiently
high intensities are used. The pump to signal conversion efficiency of the laser
can be used as a good practical estimation of the the fractional heat load.

Longitudinal distribution of the temperature difference between the centre
of the fibre core and surroundings is plotted in Fig. 13.20 (a), where the expo-
nential form that follows the pump absorption distribution can be recognized.
Using the above equations we calculated the radial temperature distribution in
the Er:ZBLAN fibre laser setup described in Sec. 13.2.12. The heat source is
assumed to be only in the core of the fibre (20 µm diameter), while the 350 µm
cladding and 430 µm polymer coating act as passive heat resistance and the sur-
rounding air is the heat drain defined as a boundary condition. The temperature
difference between the fibre and its surrounding air is plotted in Fig. 13.20 (b).

FIGURE 13.20 (a) Longitudinal temperature distribution in the centre of the core (𝑟 = 0 µm in
Er:ZBLAN fibre laser from Sec. 13.2.12 with 10 W input pump power. (b) Radial temperature
distribution at the pump end (𝑧 = 0 m) of the same fibre laser. The core is the heat source (red
area) and a free-air boundary condition (blue line) is used, while temperature difference between the
surrounding air temperature is shown.

We note that the temperature drop from the core to the outer side of the fibre
coating is only about 4 K, but its gradient Δ𝑇/Δ𝑟 is greater than the longitudinal
gradient Δ𝑇/Δ𝑧 by about three orders of magnitude. The approximation to
neglect the lateral heat flow in Eqn. 13.21 is thus well justified. The majority
of contribution to the temperature increase, however, appears at the fibre-air
boundary, with ℎ = 80 W/(m2K) as was used in this case.

Knowing the heat transfer coefficient parameter ℎ is therefore of critical
importance to obtaining accurate temperatures in the fibre. In air-cooled fibres
(or fibre tips suspended in air) the heat flows from the fibre into the surrounding
air via natural convection and with thermal radiation. Natural convection is a
linear function of temperature difference, and it depends on the air humidity
as well as the geometry, size and orientation of the body. The optical fibre
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in our case is a horizontally placed cylinder with a diameter in the range of a
few hundred µm, and in this range the heat transfer coefficient depends strongly
on the diameter [27]. The radiative power of a grey body is described by the
Stefan-Boltzmann law and depends on the fourth power of the temperature. It
can be linearised in a narrow temperature range of interest above the absolute
zero temperature, to form a combined heat transfer coefficient of the form:

ℎ = ℎ0

(
𝑟0
𝑟e

)2/3
+ 4𝑒𝜎𝑇3

a , (13.25)

where ℎ0 = 50 W/(m2K) and 𝑟0 = 250 µm are constants that were obtained
with computational fluid dynamics calculations [28]; 𝑒 is fibre surface emissivity
(∼0.9 typical for glasses and polymers), 𝜎 is the Stefan-Boltzmann constant and
𝑇a ambient air temperature.

The dependence of the combined heat transfer coefficient on the fibre size
is plotted in Fig. 13.21(a), where the significant role of the fibre outer (coating)
diameter can be observed. It is worthwhile to note that the benefits to cooling
in the fibre geometry are thus two folds, firstly by spreading the heat generated
in laser operation along the long length of the fibre, and secondly by enabling
effective heat removal from the surface due to their small diameters (as compared
to e.g. larger and shorter bulk crystals having typical dimension in the mm range
and ℎ ∼ 10 W/(m2K)).

FIGURE 13.21 (a) Calculated heat transfer coefficient due to convection and radiation, depending
on the diameter of the fibre outermost layer and temperature, respectively. (b) Measured (dots) and
calculated temperatures (lines) at the pumped end of the Er:ZBLAN fibre laser from Sec. 13.2.12 in
two cooling conditions, suspended in air and contacted with a thermal interface material (TIM).

Nonetheless, convective cooling still represents the main limit in removing
the heat and thus decreasing the temperature of the fibre core. This limit can
be greatly alleviated, however, by contacting the fibre surface with materials
that have much higher heat conductivity than air, e.g. by immersion in water
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or using special thermal interface materials (TIM). In that case the heat transfer
coefficient can become large enough to effectively render the last term in Eq.
negligible in comparison to the radial heat flow inside the fibre. This condition
is achievable in practice even though e.g. water (or many TIMs) have thermal
conductivity comparable to to that of the ZBLAN (𝑘 ∼ 0.7 W/mK), which is
due to cylindrical geometry.

In Fig. 13.21(b) measured and calculated temperatures of the fibre tip are
shown at the pump end for the two cooling arrangements, namely with the fibre
tip suspended in free air, and also with the same fibre tip contacted with thermal
interface material and clamped in a water cooled metal block. The comparison
clearly shows that an effective cooling scheme can decrease the core temperature
by almost an order of magnitude. We note that similarly effective liquid cooling
has been used experimentally to achieve a previous record 24 W output power
in a Er:ZBLAN fibre laser [29].

13.4 ULTRAFAST MODE-LOCKED LASER MODELLING

The rate equation approach introduced earlier in this chapter is a valuable tool
for modelling CW, Q-switched and gain-switched laser emission, where only the
intensity of the laser field (i.e. photon flux) is considered. This method, however,
is not appropriate for simulating mode-locked lasers, which produce picosecond
and femtosecond pulses and are an important class of laser system in their own
right.

For these ultrashort pulse durations, other physical phenomena (e.g. dis-
persion) become important, requiring phase information in addition to intensity
information, to accurately describe pulse evolution. The light field can therefore
be modelled as an array of complex numbers, representing the time-dependent
field amplitude, 𝐴(𝑡) on some appropriately chosen numerical grid. Fortunately,
due to the timescales of such ultrashort pulses, it is often reasonable to neglect
the complex gain dynamics in mode-locked lasers in favour of a simple generic
gain model (i.e. not requiring detailed spectroscopic information), and to pri-
marily focus on the dispersive and nonlinear effects that have a more significant
role on pulse shaping.

The problem of computing the output from a mode-locked laser thus reduces
to the simulation of pulse propagation along fibre, in addition to defining sim-
plified models to describe the action of other cavity components. One could
formulate a model that combines the action of all these components lumped into
a single equation to describe the whole cavity (e.g. the Haus Master Equation
/ Ginzburg-Landau Equation [30]), with averaged cavity properties specified as
normalised input parameters. However, a more accurate, and conceptually sim-
pler, piecewise approach is to consider the effect of each component in turn. The
complete simulation procedure is then: begin by generating a initial noise field
(e.g. shot noise); propagate this field through the numerical model for each cav-
ity component in turn; after one round-trip, extract some light as the output (i.e.
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at an output coupler) and re-inject the remaining light into the first component;
repeat this process until the simulated output converges to a steady-state (often,
requiring thousands of round trips).

We note that this modelling approach has already been widely studied for
near-IR fibre systems (e.g. Refs. [31, 32, 33, 34, 35] and references therein).
Practically, the most demanding aspect is solving the nonlinear pules propaga-
tion equation, often in the form of a generalised nonlinear Schrödinger Equa-
tion (GNLSE). Practical modelling techniques to solve the GNLSE have also
been widely discussed (e.g. using split-step or interaction picture methods; see
Ref. [36] for a comprehensive treatment). Therefore, for brevity, we focus here
on summarising the nuances of adapting such models for mid-IR fibre lasers,
which requires developing models for the relevant properties of mid-IR glasses
and components, in addition to consideration of mid-IR specific problems such
as atmospheric absorption.

13.4.1 Numerical Models for Mid-IR Components

13.4.1.1 Fibre

For realistic ultrashort pulse simulations, it is essential to provide accurate dis-
persive and nonlinear properties of the fibre. Short pulses intrinsically possess
broad bandwidths, thus it can be important to know these properties at not only
a single wavelength, but across the whole region of interest, spanning 10’s–
100’s nm. The fibre’s optical properties also depend on which optical mode is
excited, although we typically consider only the fundamental LP01 mode (i.e.
assuming single-mode fibre). Of course, for optimal accuracy the fibre could be
directly measured, although it is often preferable to numerically estimate these
properties, saving time and enabling new fibre designs to be evaluated.

In this case, for symmetrical step-index fibre geometries, the mode’s prop-
erties can be described by a characteristic eigenvalue equation, following the
seminal work of Snyder and Love [37]. The equation takes as inputs: the core
diameter, and refractive index of the core (𝑛co) and cladding (𝑛cl) at a given wave-
length 𝜆. The eigenvalue solution is the propagation constant 𝛽(𝜆), which can be
computed across a range of wavelengths to describe the wavelength-dependent
phase delay. These 𝛽 values can be directly included in a frequency-domain
GNLSE to account for all dispersive effects, or alternatively, particular disper-
sion orders (e.g. 𝛽2 is group velocity dispersion, 𝛽3 is third order dispersion
etc.) can be found by differentiation: 𝛽𝑛 =

d𝑛𝛽
d𝜔𝑛 .

This widely used technique is simple to adapt for mid-IR fibres by entering
appropriate refractive index values for the fibre’s soft glass material. While
it should be noted that ZBLAN is a multi-component glass where the exact
composition (and thus properties) may vary between manufacturers, reasonable
accuracy is obtained using Sellmeier equation coefficients in literature from early
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bulk glass measurements. The refractive index is thus given by:

𝑛2 (𝜆) = 1 +
∑︁
𝑗

𝐴 𝑗𝜆
2

𝜆2 − 𝐵2
𝑗

(13.26)

where for ZBLAN, 𝐴1 = 1.22514, 𝐴2 = 1.52898 and 𝐵1 = 0.08969 µm, 𝐵2 =

21.3825µm [38]. The difference between core and cladding index is specified by
the fibre manufacturer, often in terms of numerical aperture, NA =

√︃
𝑛2

co − 𝑛2
cl.

Therefore, by inputting only the core diameter and NA of any mid-IR step-index
fibre, alongside appropriate Sellmeier coefficients, it is possible to compute the
full dispersion profile.

This technique also enables determination of the fibre’s nonlinear parameter,
𝛾, which is defined as:

𝛾(𝜆) = 2𝜋
𝜆

𝑛2
𝐴eff (𝜆)

(13.27)

where 𝑛2 is the (approximately wavelength independent) material’s nonlinear
index and 𝐴eff is the effective mode area. 𝐴eff (𝜆) can be found by integrating
over the field amplitude originating from the eigenmode analysis, e.g. defined in
Ref. [37], or more simply, by applying the approximate Marcuse equation [39].
For the inherent material nonlinearity, 𝑛2 values reported for ZBLAN in the liter-
ature show a degree of variation, from 2.1×10−20 to 5.4×10−20 m2/W, although
we note that 𝑛2 =2.1×10−20 is widely used, following a recent study comparing
ZBLAN experiments and simulations [40].

Pulse shaping in mode-locked lasers is dominated by interplay between 𝛾 and
𝛽, thus the above fibre model is often sufficient for simulating ultrashort pulse
generation. Under certain circumstances (e.g. long fibre lengths / very high
peak powers), however, additional nonlinear effects such as stimulated Raman
scattering can become important. Studies of near-IR femtosecond lasers have
shown that while such phenomena can typically be neglected, when cavities are
designed for maximum peak power, Raman-driven destabilisation can occur [41],
requiring the inclusion of the fibre’s Raman gain profile for accurate simulations.
Therefore, mid-IR mode-locked laser simulations could be further augmented by
including numerical models for Raman gain in ZBLAN fibres, e.g. as discussed
in Refs. [40, 42]. Finally, while we have focussed on ZBLAN fibre, one could
model fibre of any material using the same approach, simply by providing the
associated Sellmeier coefficients and nonlinearity values.

13.4.1.2 Gain Medium
Amplification in rare-earth-doped ultrafast fibre lasers can be simulated by in-
cluding gain 𝑔(𝜆) in the GNLSE. While one could compute gain values and the
exact position-dependent gain shape (based on the population inversion) from
detailed rate equations each round-trip (as presented in the first part of this chap-
ter), the computational cost would be high. Additionally, in many mode-locked
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lasers, cavity phenomena such as fibre dispersion or other added components
place more restrictive limits on pulse narrowing (i.e. preventing spectral broad-
ening) than gain filtering anyway. Despite the fact that mid-IR transitions are
typically complex (i.e. requiring ESA or ETU), Ref. [43] showed (for an 2.8 µm
Er:ZBLAN laser) that a simple saturable gain model (as widely used for near-IR
mode-locked laser modelling) is a good estimation. In this case, the gain is
defined as:

𝑔(𝜆) = 𝑔0
1 + 𝐸𝑝/𝐸sat

× 𝑆(𝜆) (13.28)

where 𝐸sat is the saturation energy (which is varied to simulate changing the
amplifier pump power), 𝐸𝑝 =

∫
|𝐴(𝑡) |2𝑑𝑡 is the simulated pulse energy, 𝑔0 is

the small-signal gain and 𝑆(𝜆) is the spectral profile of the gain. 𝑔0 can be
estimated beforehand from a CW rate equation analysis (since in both CW and
mode-locking operating states, once a steady-state is reached, the gain does
not change with time) or alternatively can be adjusted empirically to calibrate
the model against existing experimental datasets. 𝑆(𝜆) can be defined by a
Lorentzian line shape, centred at the known emission wavelength of the ion
and with full width at half maximum (FWHM) set equal to the width of the
ASE spectrum that is measured from the fibre of interest when pumped, thus
simulating the finite gain bandwidth [43].

13.4.1.3 Saturable Absorber
A saturable absorber, which is commonly used to passively modulate cavity
light to generate ultrashort pulses, can be described by an intensity 𝐼 (𝑡) =

|𝐴(𝑡) |2 dependent transfer function (i.e. acting instantaneously on the pulse)
with transmission (so 𝐴out =

√
𝑇𝐴in):

𝑇 (𝐼) = 1 − 𝛼0
1 + 𝐼/𝐼sat

− 𝛼ns (13.29)

where 𝛼0 is the modulation depth, 𝐼sat is the saturation intensity and 𝛼ns is
the non-saturable loss (which can be directly measured or obtained from the
saturable absorber manufacturer).

Thus far we have considered a scalar optical field 𝐴(𝑡), which assumes a
fixed linear polarisation (i.e. using all-polarisation-maintaining (PM) fibre).
This approach has been widely shown to yield good experimental agreement,
even with lasers constructed from non-PM components. For the case of non-PM
lasers, this can be explained since an adjustable polarisation controller is often
included in experiments to compensate for uncontrolled cavity birefringence.
However, for added accuracy and to simulate polarization-based mode-locking
phenomena (e.g. nonlinear polarisation evolution, NPE), a vector-based GNLSE
can be employed which propagates two fields along the fibre, 𝐴𝑥 (𝑡) and 𝐴𝑦 (𝑡)
accounting for the two polarization modes and their interaction [43, 44].
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(a)

(c)(b)

FIGURE 13.22 (a) Atmospheric absorption coefficient and induced modification in refractive index
around 2.8 µm. Comparison of experimental and simulated (b) optical spectrum and (c) autocorre-
lation trace of a mode-locked Er:ZBLAN fibre laser. From Ref. [43], © SPIE.

13.4.2 Impact of Atmospheric Absorption

The presence of numerous atmospheric molecular absorption lines in the mid-
IR region results in an additional pulse shaping effect in mid-IR mode-locked
cavities that include free-space sections. In this case, numerical modelling is
useful tool to understand the impact of such features [43, 45].

First, absorption data can be obtained from the comprehensive HITRAN
molecular spectroscopic database [46]. This absorption leads to both a wavelength-
dependent reduction in light intensity and a phase delay, where the phase delay
can be computed based on the change in air’s refractive index according to
the Kramers-Kronig relations [Fig. 13.22(a)]. Free-space sections can then be
described with complex transmission matrix 𝑇 :

𝑇 = exp
(
−𝐿atm

(
𝑖𝜔

𝑐
𝑛(𝜔) + 1

2
𝛼atm (𝜔)

))
(13.30)

where 𝐿atm is the free-space section length, 𝑛(𝜔) = 1 + Δ𝑛(𝜔) is the modified
atmospheric index due to absorption and 𝛼atm is the atmospheric absorption
coefficient [43].
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13.4.3 Mode-Locked Laser Modelling Applications

The techniques outlined in this section have been practically applied to numerous
mid-IR lasers, with agreement between simulations and experiments validating
the methods. For example, Ref. [43] studied one of the first femtosecond mode-
locked 2.8 µm Er:ZBLAN fibre lasers, which generated 270 fs pulses with
23 kW peak power. Using simulations based on a GNLSE with a simplified
gain model, and also including atmospheric absorption, optical spectra and
autocorrelation traces were numerically computed that captured detailed features
of the experiment [Fig. 13.22(b)–(c)]. Notably, this included sharp spectral dips
corresponding to absorption lines. The simulated output showed 22.8 kW peak
power and 212 fs pulse duration, in reasonable agreement with experimental
values.

A major benefit of simulations is the ability to selectively disable certain
physical phenomena in the model, thus isolating the impact of each effect. In-
terestingly, by contrasting simulations performed with/without atmospheric ab-
sorption, Ref. [43] showed that these absorption features increased the number of
round-trips required after turn-on before the laser converged to stable operation,
particularly for short fibre lengths. Such observations are critical to guiding
future laser designs and we note that Ref. [44] has also recently considered the
optimisation of Er:ZBLAN mode-locked lasers through detailed modelling.

An additional successful application of numerical simulations was the pro-
posal/demonstration of frequency shifted feedback mode-locking in a Dy:ZBLAN
fibre laser, tunable from 2.97 to 3.3 µm [47]. Here, the inclusion of an intra-
cavity AOTF led to a frequency shift each round trip, enabling pulse generation
without the need for a saturable absorber. By including a numerical frequency
shift and bandpass filtering effect in the laser cavity model, simulations were
able to accurately predict the laser output, in addition to revealing new details
about the pulse formation process.

13.5 CONCLUSIONS AND OUTLOOK

Computational models are an invaluable tool in mid-IR fibre laser research and
development. At the most basic level, the rate equation approach provides
a description of the ionic population dynamics under the influence of optical
excitation and subsequent emission. Rate equation modelling has therefore
been shown to be ideal for estimating important laser performance metrics,
subject to spectroscopic data inputs and cavity design parameters. With these
tools, researchers have been able to optimize laser designs using numerical
optimization routines, with significantly lower cost and shorter timescales than
equivalent laboratory-based experimentation alone.

The utility of rate equation modelling extends beyond laser design using
known rare-earth transitions, however. By comparing experimental and numer-
ical observations, researchers have been able to use their models to estimate
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unknown spectroscopic quantities, such as ETU coefficients and ESA cross sec-
tions, which can be otherwise challenging to measure directly. With sustained
research efforts to push fibre lasers to even longer wavelengths, rate equation
models are therefore critical to the discovery and understanding of new laser
transitions. For example, a room-temperature 4 µm fibre laser has recently been
demonstrated using Ho:ZBLAN [48], following numerical investigations that
elucidated ESA and ETU as pathways to overcome the self-terminating nature
of the transition [49]. Much further work still remains to understand how to
optimize these new 4 µm lasers. There is also intense research activity in the
development of doped chalcogenide fibres for even longer wavelength emission,
supported by many positive numerical modelling studies [50].

One of the main challenges in mid-IR rate equation modelling is that, apart
from the simple case of the in-band-pumped Dy, mid-IR lasers typically rely on
spectroscopically complex transitions between high-lying levels in an ion’s en-
ergy level structure. As a result, numerous levels and many excitation/relaxation
pathways must be considered, leading to complicated systems of equations.
While one can always consider high-performance computing (HPC) facilities for
such problems, for widespread practical exploitation of laser modelling tools,
it is preferable for simulations to be completed on non-specialist hardware and
within reasonable time frames.

As with all simulations, a trade-off exists between model accuracy and the
computational cost of finding solutions. Therefore, various approaches have
been discussed in this chapter to simplify the problem while retaining the core
physics. An additional aspect is the importance of structuring the problem in
a format which is amenable to solution by high-performance algorithms. The
matrix formulation of rate equations is one such example as it enables efficient
linear algebra techniques to be employed. It is foreseeable that future theoretical
advantages could offer additional simplifications to the mathematical formalism,
in addition to new algorithms for finding solutions.

Advances in the field of computer science and technology could also impact
on laser modelling more generally. Beyond the obvious benefit of continual
increases in processing power and more widespread access to cloud / HPC com-
puting, advances in machine intelligence are particularly worthy of note. Neural
networks and other machine learning approaches are already being widely de-
ployed across many areas of science, leading to the development of systems that
learn to solve problems based on large datasets, rather than being explicitly pro-
grammed. The application of such approaches to rate equation modelling could
potentially lead to automated agents for developing optimized lasers, without
even needing to provide the underlying physical atomic description / full spec-
troscopic data. This is definitely a fruitful area for future work.

While this chapter has primarily focussed on rate equation modelling, we
also discussed thermal simulations and mode-locked laser modelling, which are
complementary tools that will enable scaling mid-IR fibre lasers to even higher
powers and operating in ultrashort pulsed regimes. Future modelling trends and
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advances will certainly also apply to these techniques, in addition to many other
optical simulation concepts (e.g. modelling individual optical components such
as mid-IR FBGs and fibre couplers) which are beyond the scope of this Chapter.
Without doubt, optical simulations have played a key role in the significantly
enhanced performance that has been reported from mid-IR fibre lasers over the
past decade and with improved models, this trend can only continue.
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